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CHAPTER I

INTRODUCTION

i. 0 The Optimal Control Problem

Consider x(t) to be a vector in a region S of m-dimensional

space, and let it describe the "state" or condition of a dynamic sys-

tem at some point t C[to, tf]. The change in this state vector is

expressed by a system of differential equations

: f [ x(t), u(t) ] (1.1)

where f is an m-dimensional vector function, and u(t) is an

r-dimensional control vector. The control vector, u(t), is available

to a designer to influence the evolution of the state vector x(t). The

range of u(t) is a subset, U, of r-dimensional control space.

There are two manifolds in S, S and
o

initial condition X(to) = Xo, and the final state

system, respectively.

Sf, which contain the

x(tf) = xf of the

The Optimal Control Problem is that of finding a u c U

which transfers the state x from Xo CSo to x__ cSf in sucha

manner that the functional

tf

J = _t fm+l[X(_')' u(-r)] d_- (1.2)

o

takes on a least possible value.

During the last ten years, the mathematical structure under-

lying this problem has been honed to a fine edge by various workers,

employing a variety of points of view. The Calculus of Variations,

the Maximum Principle, and the functional equation approach of

Dynamic Programming have risen to provide means by which nec-

essary (and in a few cases, sufficient) conditions for the optimal



control function u*(t) can be derived. These are fully covered and

described in detail in the literature. I,2 A similar statement,

however, cannot be made concerning the application of these condi-

tions to compute optimal control functions for actual engineering

problems. Part of the reason for this is that each method of deriving

necessary conditions for the optimal control function u*(t) leads to

a subsidiary computational problem which has proven troublesome

in engineering practice. This is true even when the differential

equation system Equation (I. l) is linear, and when the cost functional

Equation (i. 2) is specifically tailored to alleviate mathematical dif-

ficulties.

The general objective of the work to follow is to demonstrate

how a relatively efficient computational technique, the simplex

method of Linear Programming, can be applied to at least one type

of optimal control problem which has significant application to the

Aerospace Engineering field. The case to be treated is the so called

Minimum Fuel Problem wherein the scalar integrand of Equation

(1.2) is defined as follows

r

%+1= lui(t>J (1.3 
i=l

The integrand of Equation (1.2) may take various forms.

Two companions to the problem at hand are

r

and

fm+l 1

(1.4)

(i. 5)

These are termed the Minimum Energy Problem and the Minimum

Time Problem respectively.



i. 1 Optimal Control and the Adjoint Vector

For the above named problems, and for a dynamic process

modeled by a system of linear differential equations

_(t) = ACt) x(t) + Bu(t) ; ]u(t)] <--M (1.6)

the optimal control function u*(t) may be discontinuous at a finite

number of points in time. Furthermore the control law, as a

function of time, depends on the function M signum "(t)B .

Here Tr (t) is the solution to the homogeneous differential equation

system adjoint to Equation (1.6). An appropriate initial condition

to the adjoLnt system must be found in order to obtain 7r*(t).

We can sketch the role of 7r*(t) for the minimum energy,

time, and fuel problems as shown in Figure 1-1. The central prob-

lem of optimal control specification is to determine the relation be-

tween _r*(t) and the given conditions of the problem. In general, this

can be done only by iterative numerical computation. One by-product

of the work to follow is a detailed insight into the nature and charac-

teristics of _'*(t) as used in various approaches to the Minimum

Fuel Problem.

1.2 Mathematical Programming

The Optimal Control Problem sketched in Figure 1-I is a

branch of a more general class, the Optimization Problem. In this

problem it is desired to minimize or maximize a function of several

variables with the variables satisfying given constraints. In the

course of applying mathematical optimization methods to the allo-

cation of scarce resources for economic and industrial processes,

another branch of the Optimization Problem has developed. This

branch contains problems of Mathematical Programming. The

scarce resources in this ease are considered to be "programmed. "
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This branch is characterized by the existence of a large number of

feasible solutions --those which meet basic constraint equations.

From these we seek to select the one or many which minimize or

maximize a given objective function. A special case of Mathe-

matical Programming is the Linear Programming (LP) Problem.

The LP problem is characterized by a large number of variables,

satisfying linear algebraic constraints, and having a linear objective

function.

Linear Programming has been applied with outstanding suc-

cess in the economic control of large petroleum refineries and other

process industries. It is an optimization technique which can handle

tens of thousands of problem variables, constrained under both

equalities and inequalities, with comparative ease. Current appli-

cations of Linear Programming have been almost entirely to prob-

lems of "static" optimization, wherein a plant functions at a relatively

fixed operating point (determined by the program), and time changes

to variables affecting the cost function are relatively infrequent. In

a refinery, for example, the disturbance may be the weekly arrival

of a tanker from an oil field which has a different quality of crude

oil than that usually received, necessitating a change in distillation

settings to optimize the profit.

The successful and practical applications of Linear Program-

ming to problems of "static" optimization are widespread and well-

known. Not so well explored is its potential usefulness to what may

be called "dynamic" optimization, wherein constraints may arise

from differential or discrete time state equations of the type en-

countered in the optimal control field. Control problems are usually

analyzed from a continuous function point of view, and the full power

of functional analysis is brought to bear. There are exceptions of



course, notably in the areas of sampled data and dynamic program-

ruing. But for the most part the point of view may be different from

that of the algebraic approach of the linear programmer. One ad-

vantage of the latter approach is that the problem formulation, if

achieved, is more directly applicable to digital computer solution

than that usually obtained from the analytic function viewpoint. An-

other advantage stems from the fact that powerful LP codes capable

of solving large scale problems already exist. One company pro-

prietary code is reported to have solved a problem in Linear Pro-

gramming involving 106 variables in over 20,000 constraint equa-

tions. The solution employed the decomposition principle developed

by Wolfe and Dantzig; solution time was estimated to be 45 minutes.

Existing LP codes are flexible and efficient. In many cases,

they will permit a parametric study of the solution to be made with

only a small increase in computer time. Newer codes will exploit

this parametric capability to perform stochastic programming.

In view of the computational demands of optimal control

theory, and the computational power of LP methods, it appears

worth-while to investigate the possible comparisons and intercon-

nections which can be made between the two.

report the results of one such investigation.

by reference.

I. 3 Scope of the Investigation

parts:

This document will

Others will be reported

The body of the work to follow is composed of three major

(a) Chapter II: This chapter introduces the elements of the

Linear Programming computation method. The simplex algorithm,

duality, decomposition, and generalized programming are described

from a heuristic point of view. The treatment of the generalized



programming concept is presented in a form which will allow future

extension to nonlinear problems.

(b) Chapters III, IV and V: These chapters describe the

application of the simplex method to the linear deterministic mini-

mum fuel problem. To facilitate the description of a wide variety

of associated concepts, only the minimum fuel problem is treated.

However, this is not the only applicable and plausible application

of LP to optimal control theory. For example, Whalen 3 suggests

4
about sixteen other useful formulations. Torng solves a two-state

variable minimum fuel-minimum time discrete problem by LP.

Sakawa and Hayashi 5 use LP in an iterative procedure yielding time

optimal solutions.

The main objective of Chapters III, IV, and V is to demon-

strate how the dual formulation of the LP problem unites some of

the well known approaches for solving linear deterministic optimal

control problems. These include Neustadt' s Geometric, the Maxi-

mum Principle, and the Functional Analysis approaches. Dantzig' s

recently proposed application of Generalized Programming is also

included. For the chosen problem, the optimal dual LP solution

provides the initial condition to the state equation of the discrete

maximum principle. The dual LP solution also provides the

Lagrange multipliers necessary in the Functional Analysis approach

to the optimal control problem. This result will permit the applica-

tion of this technique to higher order systems previously not feasible

because of computational difficulties.

(c) Chapter VI: This chapter applies Linear Programming

methods to the terminal homing guidance problem for spacecraft.

Typical rendezvous trajectories based on linearized (Wiltshire-

Clohessey) equations of motion are calculated. Under the assump-

tions made, these minimize fuel consumption. The capabilities and
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limitations of the LP method, as well as solution characteristics to

this problem, are demonstrated.
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(a) MINIMUM ENERGY (PROPORTIONAL CONTROL WITH

LIMITS)

(ORDINATE)

(b) MINIMUM TIME (BANG-BANG)

/r*(t)B

(ABSCISSA) F__(ORDINATE)
-M

(c) MINIMUM FUEL (BANG-COAST-BANG)

Tr*(t)B

(ABSCISSA) -MI F "_ _-u*(t)-MI +M (ORDINATE)

MINIMUM ENERGY, TIME, AND
FUEL CONTROL LAWS

FIGURE 1-i



CHAPTER II

ELEMENTS OF LINEAR PROGRAMMING

2.0 Introduction

Linear Programming was conceived in 1947, although its

potential, according to Dantzig, may have been recognized by

Fourier in the period around 1823. It is an optimization technique

characterized by (a) a relatively simple mathematical structure,

(b) prodigious computing power and (c) the widest range of appli-

cation to actual ("real world") engineering and industrial problems.

The ordinary Linear Programming (LP) Problem has the following

form:

Ca) Given a linear objective function

n

fix) : c.x. (2 i)
i I

i=l

and the m constraint equations

AxTb

where A is an (mx n ) constant matrix, and T repre-

sents either =, < or >

(b) Find that x which maximizes or minimizes f(x).

Much of what can be said of "Linear Programming and Extensions"

is found in Dantzig' s book under that title.6 This chapter selects,

and merely sketches some of those elements of Dantzig' s theory

which are applicable to the work which follows. Although the con-

cepts of linear programming are quite simple on the surface, there

exists in the theory and its applications an elegant mathematical

subtlety which is appreciated only by studying the subject from many

points of view, both theoretical and practical. Dantzig' s book is an

excellent compendium which can lead to this appreciation.
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2. i Systems of Linear Equations

Consider the matrix equation Ax = b. Any vector x which

satisfies this equation is called a solution of the system. Let us

consider an inhomogeneous set of m equations in n unknowns,

m < n. Such a system may: (i) be inconsistent, that is, have no

solutions or (2) be consistent, that is, have exactly one or an

infinite number of solutions.

To investigate the nature of, and to obtain solutions to, a

system of m equations in n unknowns, elementary operations,

pivot operations, and Gauss Jordan elimination are frequently em-

ployed. Consider the equation set

all x I +a12 x 2 + .............. +aln Xn = bl

a21 x I +a22 x 2 + .............. +a2nXn = b2

, ' (2.2)
I I

I I

I I

amlX 1 +am2X 2 + .............. +a x = bmn n m

Two elementary operations may be performed on this system: (1)

multiply an equation by a non-zero constant and (2) add a multiple

of one equation to any other. These row operations have the prop-

erty that the original system of equations and the transformed sys-

tem have the same solution set; i. e., they are equivalent. Note

that elementary column operations do not have this property. Ele-

mentary operations on columns do not result in an equivalent sys-

tem, but rather in a change of variables.

A pivot operation is a sequence of elementary row operations

executed as follows:

(a) Select a variable of interest, x s,

cient in the r'th equation, a
rs '

such that its coeffi-

does not equal zero.
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(b) Divide the r I th

operation # i).

equation by a (elementary row
rs

This yields a coefficient of I for x
S

the r'th equation.

in

(c) Subtract a. times the new r'th equation from each
IS

i'th equations, i = 1,2,...,r-l, r+l,..., m (elemen-

tary row operation #2). This yields a coefficient of 0

for x in all equations except the r'th (where it is 1).
S

If Equations (2.2) constitute the original system, the transformed

system will be the following:

all x I + ..... + 0 x s

I I

I I

I I

arl x 1 + ..... + 1 x s
I I

I I

! !

L I

a Xl+ .... +Oxml s

+ ....... +alnXn =

I

I

I

+ ....... +a x =b
rn n r

I

I

I

!

+ ....... a x =b
mn n m

(2.3)

The new coefficients, aij,

a

a.. =a.. -a.
ij Ij Is a

rs

a° . a

a.. = iJ or a = rj
a rj aiJ
rs rs

are related to the old, aij, by

i_r

i=r

(2.4)

Gauss Jordan Elimination consists of a sequence of pivot operations

defined above to yield an equivalent system of the following form.
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X_ m

1

I ,
I
I
J

\

x 2
\

m-- T ..... bl+_ + +- X =
I, r+l Xr+l ....... al, n n

+ a2, r+l Xr+l +' + Xn = b2...... a2, n

I
X + a a2,r r, r+l Xr+l + ........ + xn n

I
r

0 Xr+ 1 +. + 0 x I
...... n = br+l

I
[ 0 Xr+ 1 + ....... + 0 Xn = _m l

(2.5)

Several properties of the original system can be distinguished with

the aid of this transformed, but equivalent, set of equations:

(1)

(2)

(2a)

Inconsistent System: The original system is inconsis-

tent if br+l, br+ 2 .... b do not equal zero. The' m

proof is immediate since 0 = b _ 0 is a contradiction.
r+l

Consistent System: The original system is consistent if,

and only if, br+l = br+2 = .... = b = 0. A consistent
m

system has at least one solution. In this case, we can

determine one of possibly many solutions by setting all

variables Xr+l, Xr+ 2 ...... x n equal to zero.

Consistent System With Exactly One Solution: There is

exactly one solution to the original system if the a.. = 0
z3

for all i = 1,2,...,r and all j = r+l, r+2, .... n. This

solution is x = (bl' b2' .... b )'
r

(2b) Consistent System With Infinite Number of Solutions: If

a.. _ 0 for some i,j such that i = 1,2...,r and
z3

j = r+l, r+2,...,n then the original system has an

infinite number of solutions corresponding to the infinite
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domain of the real variable x. for j = r + i,
J

r ÷2,...,n.

(2c) Consistent System With Redundant Equations: If, as in

System (2.5) above, there appear equations with all zero

coefficients and the corresponding bi, i = r+l, r+2,..., m

equal zero (this is implied by the requirement for con-

sistency), then the original system contains equations

which are redundant. Redundant equations are those

which are linearly dependent on the first r equations.

If this is not the case, i.e., r = m, then the original

system is of full rank.

Linear Programming concerns itself almost exclusively with

systems possessing property (2b), i.e., consistent systems with an

infinite number of solutions. Faced with an infinity of solutions, we

find it useful to devise a way of arranging them in some preferred

order. In linear programming, this is done by assigning a linear

cost z = c I x I + c2 x 2 + .. + Cn Xn to each solution.

We then try to find the minimum or maximum of this function,

subject to the other linear algebraic constraint equations. For many

linear programming applications_ negative solutions make no sense;

hence, the variables x. are restricted in most algorithms to be
J

non-negative. This is a minor inconvenience in optimal control

applications where the control variables, corresponding to the x. I s,
J

must be allowed both a positive and negative range. However, the

non-negativity restriction aids in the formulation and coding of solu-

tion algorithms; hence, it is retained. At any rate, it can easily be

circumvented by a change of variables.

+ - + X.- >x. =x. -x. ; x. >-0, 0
J J J J J
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The next section will indicate how the Gauss Jordan procedure,

supplemented by linear cost function and non-negativity restrictions,

is used to obtain LP solutions.

2.2 The Simplex Method

The approaches to explaining the simplex method are as

numerous and as varied as its extensions and applications. Here

we follow the Dantzig notation 6 to present a broad overview of what

is done to solve an LP problem. Except for the added requirements

imposed by the cost function and the non-negativity constraints,

arithmetic operations in one form of the simplex method are the

same as those of Gauss Jordan elimination for solving a set of

linear algebraic equations. Originally the problem may be stated

as in Section 2.0.

"Find a vector x to minimize or maximize a function f(x),

such that Ax T b is satisfied."

T may represent equality or inequalities in either direction.

The given problem is first reduced to the Standard Form:

Minimize z = c 1 x I + c 2 x 2 + .... + c xn n

Subject to all x I +a12 x2 + ..... +alnXn = bl

a21 x I +a22 x2 + ...... +a2nXn --b2

(2.6)

aml x I +am2 x 2 +...+a x = bmn n n

x > 0 j = i,2, n
J

The Standard Form may be obtained from a given problem by

(a) use of slack variables when T is =<or >=, (b) change of

+ - +
variables x. = x. - x. , x. >- 0, x_-> 0 when x. is to range over

3 3 J 3 3 3
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both positive and negative values, and (c) multiplication by - 1 if

f(x) is to be maximized under the original problem statement.

The simplex method consists of two parts, Phase I and

Phase If, both employing the same algorithm consisting of pivot

operations described previously, and optimality tests to be de-

scribed below. The purpose of Phase I is to transform the Standard

Form into Canonical Form. Phase 17 then operates on the Canonical

Form to obtain an optimal solution (if one exists}.

The Phase I operation also embodies a test to determine

whether or not a feasible solution to the original problem does in

fact exist. The Phase I proeedure is simple enough in principle,

but involves too detailed an explanation. Henee, it will not be

described here. Instead, the reader is referred to any good text-

book on Linear Programming, in particular Chapter 5 of Referenee

6.

We now assume that Phase I has been successfully applied to

the Standard Form. This results in an equivalent Canonical Form.

The Canonical Form with respect to variables Xl,

x2,...,Xrn , (-z) is as follows:

IX1 ]--+ al, m+l X:m+l+ ..... + aln n =

", I_ _ I I
I x2,

I I +a2'm+l Xm+l+ ..... +a2n xn I= b2 I

" __I - l-
ax + +a x =bm I

m______]___ am, m+l Xm+l + .... _m,n n tm _
--(-z) [ + Cm+ 1 Xm+ 1 + ...... + Cn nX [ -Zo]

(2.7)
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where x.>- 0, j = 1, 2,...,n, and the bar over the constant terms
J

designates changes in their value resulting from the arithmetic

operation under discussion.

When each b. i = 1 2,...,m is greater than or equal to
1 J J

zero, we have a feasible canonical form. We desire to minimize

z. Note also that Phase I has eliminated redundant equations.

The variables Xl, x2,..., Xm, (- z) are called the basic

variables of this particular Canonical Form; all other variables are

termed non-basic. A solution n-vector

x = (x 1, x2,...,Xm 0 0 0 0 0 O)

with no more than m non-zero components is a basic feasible

solution. If the number of non-zero components of the n-vector is

precisely m, we have a non-degenerate basic feasible solution. If

the value of one or more of the basic variables x. j = 1,2,...,m
J

is zero (that is, -6. = 0, for some i = 1,2,...,m), we have a
z

degenerate basic feasible. The values _. for j > m + 1 are called
.]

relative costs because they are costs associated with possible in-

crease in non-basic variables relative to a particular (unique)

canonical form.

The Canonical Form (Equation (2.7)) is devised tO expedite

both the implementation of tests for optimality as well as the cal-

culation of the optimal solution. Its usefulness follows from the

below-listed observations :

(1) If x. = 0 for j = m+l, m+2,...,n we have abasic
3

feasible solution (b. f.s.). A b. f. s. is non-degenerate

if b. _ 0 for all i = 1,2,...,m.
1
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(2)
m

If c. > 0 for j = m+l, m+2, ..., n the b. f. s. in (1)
3

above is optimal, because increasing any xj, j = m+l,

m+2,...,n, will increase the value of z. The b. f.s.

is unique, and no other b. f. s. will give the same value

for z. This follows from the uniqueness property of

the Canonical Form

(3) If c. < 0 for some
3

crease the value of

(to an upper limit to

course, compensate

ing the values of the

preserve equality in
m

(4) If c. = 0 for some
3

(Reference 6 Theorem I page 80).

j = s- > re+l, it is possible to de-

z by increasing the value of x
S

be specified later). We must, of

for this increase in x by adjust-s

existing basic variables in order to

all equations.

j = s > m+ 1, there will be no

effect on the value of z from any allowable change in

x . In this case, we can vary x and even make it
S S

basic without changing the value of z.

Observation (3) is of interest because it provides a means of

improving the solution to obtain a lower value of z. Given _ < 0
S

we obtain a smaller z by increasing x as much as possible.
S

However, we must retain feasibility. The effect of increasing x
S

on feasibility is seen by setting all variables except the current

basic variables and x equal to zero. Thus, from Equations (2.7)
S

x. = b. -E. x i = 1,2,...,m
i I IS S

Feasibility is maintained if b. -_. x > 0
I IS S

Hence, we can increase x up to
S

s = i lais IS

for all i = 1,2,...,m.

If E. < 0, then x can be increased without bound, to provide as
lS S
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small a value of

of z

z as is desired. In such cases, a minimum value

does not exist.

Let us now consider the set of coefficient columns for which

and for which there is at least one _.. > O. If this set has
i]

more than one member, it is necessary to devise a column selection

rule. Ideally, the column selected should afford the greatest re-

duction in z. To determine that column, a computation on each

candidate would have to be made. Instead, the following a priori

rule, successfully proven in practice, will be used.

Column Selection Rule: Choose the s'th column such that

c = Min c. < O.
s j j

If, in the column s, we find more than one _. such that _. > 0,
iS IS

then it is necessary to have on hand the following row selection rule.

Row Selection Rule: Select that row r for which

0 = Min _ : E. > 0

i ais is

0 is always positive.

Next set 0 = x and adjust the remaining basic variables to main-
s ,

rain equality. This is accomplished by a pivot operation after

which we obtain a new Canonical Form as follows:

Note: The cost row is never used as a pivot row.



19

x_...._, x .... 0

I ir r ii f
I

I _ i I

i0 .... arr Ix r.... O,
I l

If I I

If I f

I I I
0 .... _ x ...x

I rflr r Ill

I
m

0 .... c x .... 0r r

-7
i l,m+1m+1
I+_

r, m+l Xm+l

I

I

+ am, m+l Xm+l

+.... +0 +... +a
; " l,n

I
i

-_ .... -}-X "_- .... "_- a

s rn

i
I

i
I

i.
i

- i
+ .... +0+ .... +a

m, n

+ Cm+ 1 Xm+ I
n

, i
xl=_l
nI 'rI
I I
I, I

xIbmlI

Xn J
where

a. a. °

- = _s 1_
aij aij a

rs

i_r

a
rj

a..

_ IJ
a
rs

i =r
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i_r
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-b _ r o
r a

rs

i =r

c a
- s rj
C. = C.
j j a

rs

C =0
S

Z =Z+

b c
r s

< z (because c < O)
a s

rs
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Note that z < z only if b > 0. If b = 0 (it cannot be less than
r r

zero by previously developed rules), we have a case of degeneracy.

will not occur as long as there are no ties in the rowThis situation

selection rule

Barring

repeated until

value of z is

system of m

given above.

degeneracy,

all c. >- 0.
]

the procedure described above is

At each repetition, a different and lower

obtained, and a different b. f.s. is generated. For a

C nequations in n unknowns there are basic
m

feasible solutions possible. Since there are only a finite number

of them and, during the procedure, none can be repeated (the

value of z being different at each repetition), the number of

iteration steps is finite. Hence, we will eventually find the optimal

basic feasible solution.

Two facts are worthy of brief note here. The ill effects of

degeneracy, while important in the theory, do not occur in practice

unless the problem is carefully and artificially constructed to do

so. The theoretical and computational problems which could con-

ceivably arise can be readily handled, however. Secondly, the

number C n may be very large. Nevertheless, the simplex pro-
m

cedure homes-in on the optimal solution in much fewer iterations

than might be expected from contemplation of this number. Fur-

ther discussion of these two questions (among the many others

which are also omitted from this exposition) can lead us too far
6

afield. The reader is referred instead to Dantzig. An excellent

and more complete exposition of the simplex method and its many

ramifications is contained there.

2.3 Matrix Operations

A matrix formulation of the arithmetic operations described

in the preceding sections is useful in the remainder of this work.
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Assume that the problem constraints are in Standard Form:

where A is an (mxn) matrix with m <-n and vector x and

form. We require z = f(x) = cx to be minLmized where c

n-dimensional row vector of cost coefficients.

Ax = b

b con-

is an

Let the rank of A be m, and select m

columns of A. Grouping these into a matrix

Standard Form constraints as

linearily independent

B, we can write the

=Ibl (2.9)

Vector xB contains the.basic variables, and xR the non-basic.

The first m rows of the Canonical Form Equation (2.7) may

therefore be expressed as

E,IB -I R N (2. lo)

so that

-i

B RNB =

m

m

a .......

i, m+l al, m

_m ....... a_ ,m+l m,_n

and B -I b I }
m

It remains now to determine the representation of c. of
J

Equation (2.7) in matrix terms. To begin, partition the cost

functional z = f(x) = cx so that

f(x) = c B x B + c R x R (2. ii)

[ "CRI Recallthatthe eostrow z = cx isneverwhere c = CB, ' .

used as a source for a pivot in the simplex algorithm, but that
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every point operation had an effect on the transformation of the

coefficients c. into the c. of Equation (2.7).
J J

Let A. be the jth column of the original A matrix. Then
J

alj

B-I A. :
J J

am 3

where the ai_a'i = 1, 2,..,m are the same as those appearing in
m

Equation (2.7) Define a scalar _j = cB B -1 A.= _ CBi aij •
• j i=i

Clearly _j is the dot product of cB and the Canonical Form' s

jth column. The CBi' s, in turn, are the cost coefficients asso-

ciated with whichever x.' s are basic at a given stage in the al-
J

gorithm. In some L.P. texts, the column selection rule is based

on the differences - , j = 1,2,...,n. That is, if j c > 0,

x. is a candidate for the optimal basic solution. This fact is
J

equivalent to the following statement

1]c. = c. - B A. = - - c.
J J J

where A. is the jth column vector of the original A matrix and
J

c. is the jth coefficient of the cost row in Equation (2.7).
J

-1

Before leaving this Section define the vector c B B = y.

It can be shown that if x _ is the optimal basic solution with co-
B

effictents c B' then

-1
W* = cB B

and _"_ is the optimal solution to a related problem called the dual.

The dual problem is described in the next section.
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2.4 Duality

This section is intended to define only the essential

properties of duality in Linear Programming. A complete expo-

sition may be found in Reference 6, Chapter VI. For every LP

problem in the unknown n-vector x (call it the primal problem),

there exists another in the m-vector 7r (called the dual problem).

Consider the following Standard Form as the primal problem.

(a) Find x = (Xl, x2,...,x )n

n

(b) To minimize z = _, c x.
j=l j J

n

aij xj = bi,
j=l

i = 1,2_...,m

and x. > 0 for all j
J

such that (2. 14)

Then the dual to this problem is written:

(a) Find w = (Wl, _r2'''''_rm)

(b) To maximize v =

m

_, _ri ai j i c.]i=l

m

Ir.b.
1 1

i=l

such that (2.15)

and It. is unrestricted in sign
i

The relationship of the two problems can be represented by means

of the following mnemonic called the "Tucker Diagram. "
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7[
1

_2

I[m

x I x 2 ......... x n

all a12 ......... aln

a21 a22 ......... a2n

aml am2 ........ amn

c I c 2 ........ c n

b 1

b 2

b
m

The A matrix coefficients are presented as a detached array, so

that the dot product of the x vector at the top outer row with every

row of a..'s is related (in our case by equality) to the outer column
1j

of b.' s. The left outer column _, and the columns of a..'s are
i Ij

similarly related to the lower outer row of c.' s. From this dia-
J

gram, the two problem statements may be readily visualized and

stated as in Equations (2. 14 and 2. 15). The important relationship

between the primal and dual problems is given by the following

theorems proved in Reference 6.

Theorem i: Duality Theorem

If feasible solutions to both the primal and dual exist,

there exists an optimum solution to both systems and

Min z = Maxv.

Theorem2: Unboundedness Theorem

(a) If a feasible solution to the primal system exists,

but not to the dual, Min z approaches - =o

(b) If a feasible solution to the dual system exists,

but not to the primal, Max v approaches +=o
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Theorem 3 : Optimality Conditions

If x is a feasible solution to the primal and

feasible solution to the dual, satisfying for

j = 1,2,...,n,

m

- SC. = C. - 7[. a. > 0

J J i=l l lj =

isa

(2.16)

then a necessary and sufficient condition for optimality

of both solutions is

c. = 0 for x. > 0 (2.17)
J J

The following observations are applicable to Theorem 3:

(a) Equation (2.16) is identical to Equation (2.13). It may also be

written as dual problem constraints

m

S 7T. a. <
i=l i lj -c'J

j = 1,2,...,m

(b) Theorem 3 may be combined into one statement

x.j cj - _.1 aij
i=l

=0 (2. 18)

(e) The Canonical Form Equation (2.7) can be used to infer the

conditions of Theorem 3.

In the next Section, we will sketch the Kuhn-Tucker Condi-

tions 7 for a linear cost function and linear equality constraints.

They are identical with those of Theorem 3.

The 7r vector defined in this section will assume more sig-

nificance in what follows. Its components, the variables _. ,
i

i = i, 2,..., m are known variously as prices, imputed values, and

Lagrange multipliers. Interpretation as the adjoint or costate
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variables of optimal control theory will be developed in the chapters

to follow. This interpretation may be introduced by an additional

observation. Let z* be the minimum cost. Then from Theorem i,

n m

z = c.x. = 7ri b. = v (2.19)
j=l ] 3 i:1 I

whereby

8z

8b.
1

-_i for i = 1,2, .... m (2.20)

The b. are the right-hand sides of the constraint equations; they
1

* represent thedetermine the value of the constraint. Thus, the Yi

change in optimal value for a change in constraint.

2.5 Kuhn-Tucker Conditions

The LP problem considered in the preceding sections of

this chapter belongs to the class of constrained minimization prob-

lems which may be treated very generally using Kuhn-Tucker anal-

ysis 7 To avoid going too far afield in illustrating this connection,

we will generalize the previous LP problem Equation (2.6) only to

the point of allowing f(x) to be nonlinear. It is worth considering

at least this much of a generalization to expedite the analysis; and
7

to link it with Kuhn-Tucker conditions derived elsewhere.

If we could assume that the optimum x were an exterior

point to the set of feasible solutions we would formulate the

Lagrangian function

L(x,_) : f(x) + _,
i=l

(2.21)

n

where r.(x) : _ a.. x. i : 1,: m.
1 15 ' ' ' " ' 'j:l J

In this case classical
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necessary conditions for

f(x) are

8L 8L
-0

8x. 8y
J

x to be the x which locally minimizes

-0 (2.22)

In mathematical programming problems, however, the

analysis must consider cases where the optimum x is a boundary

point of the set of feasible solutions. This is always the case with

linear cost functions. Thus, the analysis becomes more compli-

cated. We are required to replace the simple set of necessary

conditions given in Equation (2.22) with Kuhn-Tucker conditions.

Fortunately, in the case of linear programming, the increased

analytic complexity is more than offset by the resulting computa-

tional simplicity. In LP, computational efficiency is obtained by

taking advantage of the prior knowledge that the optimal x will,

not only be on the boundary, but will be an extreme point of the set

of feasible solutions.

The Kuhn-Tucker optimality conditions for a nonlinear cost

function with linear equality constraints are as follows:

If a certain x = x* minimizes an objective function

f(x) subject to linear equality constraints, then

there exists a vector _':' unrestricted in sign such

that, for all values of j, j = 1, 2,...,n

m

* = 0 and 8f _ ,,,.-(a) xj 8x. _r. a. >- 0 (2.23)
3 i=l 1 lj

or

m
, 8f

(b) x.j > 0 and 8x. _ _*i aij = 0 (2.24)
3 i=l

We may combine (a) and (b) to arrive at
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x ,* % : o
J xj i:l I

Next observe that, since in LP f(x) =

(2.25)

n

cj xj of
a1-=- ' Ox.j - c..j

Thus

Equation (2.18) from the last section and Equation (2.25) above are

equivalent conditions.

Let us now consider Equation (2.25) with

Summing over j we obtain

cjx - = 0
j=l a 1Ir- j=l

n

Since _ a. x. = b.
j=l lj 3 I

Of
-- Co °

8x. .1
3

(2.26)

we obtain the Duality Theorem (Theorem 1 of

Section 2.4).

n m

Min f(x) = _, c x '_ = _ _*b. = Max v(_) (2.27)
j=l J J i=1

An additional observation is in order before leaving this

section. The m-vector y used in the statement of the Kuhn Tucker

conditions, (a) and (b) above, is the same vector used in the

Lagrangian function

L(x, lr) = f(x) + _ bI- (x)
i=l

The point at which f(x) takes on a local minimum is a saddle point

of the Lagrangian L(x,y). L(x,y) is said to have a saddle point

at _x, _r* e Era+ n which minimizes f(x) if

L(x '_, y) -< L(x ,y ) < L(x, y*) (2.28)
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Our original minimization problem now has a "dual" aspect. Given

we must minimize L (x, 7[*) over acceptable values of x. On

the other hand, to provide for constraints the dual problem of max-

imizing L (x* w) over acceptable values of 7[ enters the picture.

2.6 Generalized Programming

In Section 2.2 were described methods for obtaining solu-

tions to LP problems for which the columns of the (m x n) matrix A

were constants and their number, n, predetermined. Section 2.2

demonstrated that a "Column Selection Rule" could be determined

which, along with other rules and operations, would lead to an

optimal solution in a finite number of steps. This Section deals

with a programming problem formulation in which we wish to

determine, not only the solution vector x, but also column vectors

(analogous to the columns of the constant matrix, A) which, when

added during the course of the algorithm, will yield a minimum

f(x).

In this new formulation, columns are allowed to be variable

in both form and number. Such a programming problem bears the

name "Generalized Programming. " It was developed by

Philip Wolfe in the course of his work with George Dantzig on

decomposition algoritkms. (Reference 6, Chapter 22).

Let us call the finite dimensional Euclidean space En,

solution space. The solution vector, x of a programming prob-

lem is a member of En, Two functions may be defined

n

f: E -_ E (e.g., f(x) = _, ci xi)
n 1 i=l

r: En-_Em (e.g., r(x) = Ax=b and x >- 0)
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The m-dimensional space E is called the requirement space for
m

reasons which will become apparent later. We combine the two

mappings f and r into one defined as follows:

F:E -_E
n m+l

where F(x) = Jr(x), f(x)]. The space Em+ 1 will be termed the

extended requirement space. It consists of E space extended to
m

include an (m + 1)st coordinate representing the cost function f(x).

We will assume that the vector function r(x) induces on E
n

a set St E - an infinite collection of n vectors x termed
n'

feasible solutions. These xeS are feasible because they meet re-

quirements of the problem expressed by r(x). In linear program-

zing, they are the x >- 0 which satisfy Ax = b. The m-vector b

is often referred to in LP literature as the requirements vector.

We next assume that the feasible solutions, x, generate a

convex set [2 ¢ Era+ I. Let us define an (re+l) column vector

P(x) ef2 where

r2(x)
P(x) -- ,

i
i

r (xl

and, a forteriori,

Figure 2-1.

xeS.

f(x)
n n

The set f2 for m + 1 = 3 is depicted in

The generalized programming problem may now be stated

as follows:
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f(x): z

r_(x

_(x)

EXTENDED REQUIREMENTS SPACE CONTAINING f_

FIGURE 2-i
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(a)

(b)

If we define

Given an objective function

z --f(x)

and the m constraint relations

r(x) = b

Find that n vector x which minimizes

Q

Z,

bl 0

!I 0U= II

_ _m_ 0

_ 0 -i ,

we can rephrase the problem as one of finding

z such that

x which minimize s

zU + P(x) = Q (2.29)

To convert this problem into computational form, we shall employ

a "c'olumnar procedure" described by Wolfe. 8 This consists of

approximating the given (possibly nonlinear) mathematical pro-

gramming problem Equation (2.29) by a generalized linear pro-

gramming problem amenable to solution by simplex methods.

A generalized linear programming formulation is charac-

terized by its ability to accept new columns, and reject old ones,

in such a manner that the linear approximation is steadily refined

without an inordinate increase in the problem' s "A" matrix size.

A description of generalized linear programming along with an

interpretation extendable to optimal control computations follows.

Choose at least t > m + 1 grid points _ _S, j = 1,2,...,t.

If these are suitably chosen, we may write the desired solution

vector x as a linear combination of the points xj
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t

where _ k
i:l J

P(xj)c E
m+l

t

x= _IkjX j, kJ> 0
j=

= i. The t points xj

such that the vector,

being in the convex hull of the t > m + 1 points

that is,

(2.30)

define corresponding vectors.

P(x) e f2, can be expressed as

P(xJ), j = 1,2,...,t;

t

P(x) = j_lXj.= P(xJ), xJ_>0

t

where again _, k = i We are now able to approximate Equation
i=1 j "

(2.29) by an LP problem of the following form. By substituting

Equation (2.31) into Equation (2.29) and adjoining the "coordination

constraint" Equation (2.33) obtain

(2.31)

t

z U + _ k. PJ : Q (2.32)

j=l J

where

mized.

t

k.=l
j:l J

(2.33)

i
P" : P(x _) and the k.-> 0 are to be found so that z is mini-

J

The Standard Form for this problem, and its dual, may be

diagrammed as in Section 2.4.

k I k2 ............... kt

I,..°.Q°,°*°o.,,,.i

Pll P12 ............. Pl,t
I I I

P ,1 Pro, 2 .......... Pro, t

Pm+l, i Pro+l, 2 .......... Pm+l, t

( - v)

I
7r

m

_m+l

(- z)

0 1

I
f I
0 b

m

1 0

-10 0 ................. 0
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Using this diagram, we may write:

(a) The Primal Problem: Find k. >- 0 to minimize z such
J

that

k I + k 2 + ..... + k t = 1

PlIXI + P12k2 + ..... + Pl, tat = bl

(2.34)

Pmlkl + Pm, 2k2 + ..... + Pm, tat = bm

Pm+l, l_tl + Pm+l, 2_t2 + ..... + Pm+l, tXt = z

(b) The Dual Problem: Find _., unrestricted in sign, to

maximize I-V+Ylbl+Y2 b2+''+_l mbmJ suchthat

(- v) + PlIYl + ......... + Pro, l_m + Pm+l, l_'m+l -- 0

(- v) + P12_'l + ......... + Pm, 2_'m + Pm+l, 2_'m+l - 0

(2.35)

(- v) + PltW1 + ......... + Pm, t_m + Pm+l, tWm+l < 0

<-i
m+l

The dual problem constraints stated in vector-matrix

notation are

=[P]-v <_o (2.36)

where v = [v,v,...,v], an(m+l) row vector, and

an (m+l) row vector with its (m+l)st component,

< -1 [P] is the following (m+l) x (t) matrix_m+l - "

is
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[P] =

m

Pll

PI2

PI2 ...... Pl, t

P22 ...... P2, t

Pm+l, 1 ...... Pm+l,

The geometrical interpretation of Equation (2.36) will be devloped

further in Chapter III. For nowj let us postmultiply Equation

(2.36) by the column vector

to the optimal solution x" =

t

re calling that

k* =EX1, k 2 .... ,kt] corresponding

k_!"xj . From this operation, and
J

kj 1, we obtain

_r P(x*) -v <- 0 j" (2.37)

If now y = _" is the best value of _, we can write

7r P(x*) - v = 0 (2.38)

which is the equation of a hyperplane H tangent to the set _ at the

point in (re+l) space (bl, b2, z*). Figure 2-I depicts this hyper-

plane with its defining vector _':'.

The computational problem associated with Equation (2.34)

would become difficult even for the simplex method ifthere were

not some method of limiting the number of columns PJ = P(x j) as

the number of grid points required to search for, and to refine a

solution is increased.

Recall now an important property of the simplex solution of

Equation (2.34) consisting of m + 1 constraint equations and an

, t

P(x) = _ kjpJ------->P(x") as t -_ oo
j=l
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objective function z. That is, there will be at most only m + i

non-zero kj,s in the optimal solution of the approximating LP

problem. As we refine the solution by adding more grid points,

and hence more columns PJ, we could well drop some of the

columns associated with those kj's which equal zero. The pro-

cedure of choosing which columns to drop, and the method of gen-

erating new columns to add, is the essence of the decomposition

algorithm 6, 8 which shall be described in the next section.

2.7 Decomposition

Briefly, the decomposition procedure consists of formu-

lating a master problem, or "coordinating set" of equations, such

as Equation (2.34). The master problem produces, at each itera-

tion, a "price" vector (dual variable vector), 7r. The "price"

vector _ is used to formulate one or more smaller sub-problems

which are solved to produce new columns (sometimes called activity

vectors) for the master problem. Under appropriate convexity

assumptions, this process will converge to a solution.

Consider Equation (2.34) as a master problem with

t ->m + 1 linearly independent column (activity) vectors. Assume

that by application of a Phase I and Phase II procedure we have

found a solution Xl' -i2' "'" Xt and the corresponding (- v),

....  m+l 8As in Wolfe, consider the question: "Of all
t+l

possible points x that might be adjoined to the master problem

to refine the approximating grid, which point would the simplex

method choose as contributing most to the solution of the original

J'Note: The bar over the k and 7r in this section indicates that

there are new values of k and Ir obtained after an iteration of

the algorithm.
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problem ?" The answer lies in the Column Selection Rule of Section

2.2. For convenience, we repeat this rule here

Column Selection Rule: Choose the s' th

column of the Canonical Form so that

m

c = Minc. < 0

s j j
(2.39)

But we have seen in Equation (2. 13) and Equation (2.16) that

m

C =C - Tf. a..
S S i 13

i=l

Hence the column selection rule tells us to pick that xt+ I which

will create a column such that

(2.40)

or equivalently, such that

--ct+ 1 = Maxj [- cj + _ _i aij] (2.41)

To link our analysis thus far to the generalized programming prob-

lem originally stated at the beginning of Section 2.6, we may make

the following substitutions:

Po =a = 1j oj

Pij : ri(= aij xJ)

= c. = f(x j)
Pro+l, j ]

i = i, 2, .... t (2. 42)

The (t+l)th column to be added is thus obtained by solving the fol-

lowing sub-problem which depends on the _I' _'2'""" _m+l pre-

viously determined from the master problem:
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Maximize f (x) + _i r_ (x (2.43)
x eS m+l .I=1

Since Wm+l = - i, this statement is identical to Equation (2.41) _. Any

number of optimization methods may be employed to find the mini-

mum of this subproblem. Note also that it need not be linear. Fur-

thermore, it is frequently easier to solve than the original problem

because the _.' s (Lagrange multipliers) are already specified.
1

t+l
After finding the x which maximizes Equation (2.43), we

make the substitutions indicated in Equation (2.42) to determine the

(t+l)'st column to be added to the master equation, that is

=a =i
Po, t+l o, t+l

Pi t+l = a. = ri(xt+l)
, _,t+l

Pm+l,t+l = Ct+l = f(xt+l)

(2.44)

The master equation is again solved with the new (t+l)st column

included, and a new set of _.' s is determined. With this new set
1

we again solve Equation (2.34) until the optimality criterion, c. >- 0
J

for all j, is satisfied for all columns we are able to construct.

Columns for which the k. remain zero for several iterations may be
J

dropped, thus keeping the master problem to a tractable size. The
6

procedure converges to a solution if the set _ is convex. It may

possibly converge for more general problems, for example where

convexity does not hold. Everett 9 presents his so-called "Main

Theorem" which can be applied to the analysis sketched above.

Everett' s "Main Theorem" alleges that the method is "fail-safe" in

the sense that, if a solution can be found, it is a true solution.

Everett' s Theorem employs a "generalized Lagrange multiplier"

_Note: We may always assume that w is normalized so that Wm+l = - i.
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point of view which may be applied to a variety of problems (with

discrete, nonlinear and nonanalytic properties). Brooks and

Geoffrion I0 have elaborated on Everett' s work with "generalized

Lagrange multipliers, " and have linked them to the dual variables of

linear and generalized programming.

One more interpretation of the decomposition procedure is

worthy of note before leaving this section. As demonstrated above,

the master program may be viewed as "coordinating" the (t+l)' st

new column with the already existing columns. If each column is

considered a member activity of a larger industrial combine, the

subproblem, Equation (2.43), corresponds to the problem faced by

the manager of that member activity. The only "instructions" given

to the activity manager by the central authority (master program)

are an objective, Equation(2.43), and a current price structure, the

_.' s. This price structure is subject to change as a result of the
i

coordination process taking place at "higher headquarters. " This

interpretation, due to Dantzig, will find increasing application in

both micro and macro economics models, as well as in control

theory computations.

In Chapter III, an analogy between the dual problem (Equation
%

(2.35))and various optimal control computation schemes will be

%

developed. In particular, it will be shown how the Maximum

Principle of Pontryagin can be derived under the duality aspeets

of generalized programming.



CHAPTER III

MINIMUM FUEL OPTIMAL CONTROL

CONTINUOUS TIME CASE

3.0 Introduction

This chapter treats the continuous time minimum fuel control

optimization process from the following points of view:

Ca) Geometric (Neustadt, Reference ii)

(b) Maximum Principle (Pontryagin, Reference 12)

(c) Functional Analysis (Krasovski, Reference 13)

(d) Generalized Programming (Dantzig, Reference 14)

The relationship between these approaches will be demon-

strated, along with their unity under the duality properties of mathe-

matical programming.

We consider the following system of equations:

= A(t)x + B(t)u (3. 1)

lul M
t

u( )ldT

0

where x is an m-state vector, u is an r-vector available to the

controller and C is a performance functional representing the

control cost. Since we desire x(t) = 0 for some t = T, and since

_(t) is a non-singular transition matrix, we write

t

- x(o) : _t ¢(t°"r) B(-r) u(-r)d7

0

IuI_<M
t

C(t) : _t u(-r) IdT

0

(3.2)

4O
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Our problem is to find u(t) satisfying the conditions outlined

above such that C, the amount of fuel used in control, is minimized.

For clarity, let us consider the single input case, r = i; also, allow

A and B to be constant m x m and m x 1 matrices respectively.

The contents of this chapter apply equally well to the time varying

multi-input case.

3.1 Geometric Approach

by

At a fixed terminal time, t = T, there is a set _(T) defined

a(T)-- - _-I(_-)B u(,r)d,r, lu('r) ld_': lu(t)] -<M

The set _(T) is closed, bounded and convex in (m + I) - dimensional

Euclidean space. The (m + l)st coordinate value represents the fuel

cost, C. Since the allowable u(t) are symmetric about the origin,
T

F'b

and x+1 : _ lu(_)]d_, it follows that the set C(T) is symmetric

about the (m+ I) axis. _2(T) is represented by the shaded area in

Figure 3-I where it is easy to see that, as T is allowed to increase,

C(T) increases. The properties of 52(T) which make this intuitive

viewpoint rigorous may be found in References 15 and 16. Meditch 16

shows that T 2 > T 1 implies _(T2)_ _(TI). Thus a larger range

of initial conditions, x(o), can be driven to zero as more time and/or

possibly more fuel is allowed. This is rigorously demonstrated in

Reference 16; it is also clear from Figure 3-1 and the physics of the

situation.

For a given t = T and initial value, x(o), the minimum cost

to reach the origin is the least value of C = x for which the
m+l

point x+1 ) This is the boundarypoint b in Figure

3-i, for if point b were interior to the set 5I(T), the initial value

x(o) could be driven to zero at less cost.
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C'- Xm+ I

pJ

T

C(T)= fO lu('r)ld_"

/
/

I

x(o)
X

(STATE
SPACE)

YPERPLANE OF

SUPPORT 9' b =v

THE CONVEX SET _(T)

FIGURE 3-i
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Since b is a boundary point, and _(T) is convex, there

exists a hyperplane of support to _(T) at the point (vector) b.

This hyperplane has the vector equation equivalent to Equation (2.38)

_b=v

A
where _ is an (m+l)-row vector, b an (m+l)-column vector. Note

that b = (x(o), Xm+l) so that x(o) has dimension m.

Meditch and Neustadt 17 develop the following relation:

x(o), +i -

e _(T). This is apparent from the geometry offor all points

Figure 3-1. Next write

T

)^ 'I(o), Xm+ 1 -- _ _ = $ (_')Bu(*, lu('r) dr
O

If _ were to equal (x(o), Xm+l)
A

(as yet unknown) u(t) and w.

^(x, )7r O), Xm+ 1

we could infer that for certain

u(t)

In(t) I_ M

_-I(T)Bu(T),lu(_)I]dT

(3.3)

Another way of expressing the same equation is:

u (_,t) = arg Max _-I (-r) Bu(-r), u(_) dT

u(t)

Is(t>kM

0 A

where u (y, t) designates the optimal control.

A

The vector w embodies the relationship between the plant' s

initial state x(o), the time T allowed to drive that state to zero,

and the geometric shape of the convex set of recoverable states
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_2(T). In general, this relationship is known only qualitatively -

the sum total of this knowledge being represented geometrically in

Figure 3-1.

O_
Before attempting to solve for u (7[,t), allow the (m+l)st

A

component of 7[ to equal -1. This is permissible because the
A

magnitude of 7[ is arbitrary. Further motivation for this action

can be derived from the representation of _2(T) in Figure 3-1. In

addition, this convention causes the maximization operation on the

right-hand side of Equation (3.3) to correspond to minimizing
T

C = S,, lu(T) Id'r" Equation (3.3) then becomes
%.2

u(t)

[u(W) [-<M

d_ (3.4)

where for convenience we set

q(, : 7[ ¢-I (':)B

= u(T) -

is an m-vector. The maximization operation of Equations (3.377

and 3.4) is carried out with the aid of Figure 3-2.

{M sgn[7[ _-I (t)B1 for '7[ _-l(t)B] > M}

u°(t, 7[) (3.5)

0 for ]7[ _-l(t)B[ < M

Figure 2c shows that if 17[ _-l(t)BI = M identically for any

measurable interval in the range 0 <- t < T, the control is undefined

by the above derivation of necessary conditions. However, it is true

that u(t) lies somewhere between - M and + M, that is

0 < lu(t)l _< M
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Thus, if 17[_-l(t)B] = M in a finite interval of t, we have a

situation associated with singular solutions of the optimal control

problem. Singular solutions of this type occur naturally in the mini-

mum fuel control of a pure inertia with equations Xl = x2 = u, lu]< I.

This is discussed by Meditch. 16 A more general discussion is con-

18
rained in Leondes.

Even in the case of non-singular control, the problem state-

ment is far from complete. The optimum control u°(t, _) is ex-
A

pressed as a function of time and the (m+l)-vector, 7[ = (7[, -i). If

we could find the vector 7[ associated with the given initial condi-

tions x(o), we will have solved the "open loop" synthesis problem.

If we can do this repeatedly in a time interval negligible with respect

to the system' s (plant) dynamics, we can close the loop with a com-

puter. Finally, if u ° could be found as a function of the plant' s

state vector, we say that we have solved the "closed loop" synthesis

problem.

Reference 17 develops a steepest ascent technique for finding

7[(0)7[ = (_, -1). An initial guess is first made and substituted into

Equation (3.5). This provides an initial control function

(t,T[(°)h= G(t,w(°)_ which is used in Equation (3. I)to yielda point,U

\ / \ /

X T, (o)), on the boundary of f2(T).

Thus

x(T,_ (i)) :_(T)[x(o) + So (T) B(T) G (% (3.6)

The following recurrence relation can be developed from Equation

(3.6) and shown to converge to the optimal 7r for a convex f2(T)

Ir -7[ = -k x(o) + _-l(_.) B('r) G ,7[(i d-r (3.7)
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Reference 19 discusses a computational study of the steepest

ascent method described above. The system selected for that study

was third order with special advantageous properties. It was noted

that when k was kept constant, the method failed to work. A

variable gain (variable k) method was also tried but convergence was

slow. Powell' s gradient acceleration method was reported to

achieve good results.

3.2 Maximum Principle Approach

The Pontryagin Maximum Principle is applied extensively to

derive necessary conditions for the optimal fuel problem. We form

the Hamilt onian

H Ix(t), _(t), u(t) 1

where _'(t) is a time varying m-vector, a solution to the adjoint

equation

= _(t)IA x(t) +Bu(t) 1 - lu(t)l

_(t) = - s(t)A (3.8)

u°(t) is

Equivalently,

uO. lu°. I: u. -lu.,iI 0,
u(t)

]u(t) I -< M

According to the maximum principle, if the optimal control

applied to the system Equations (3. I), there exists a y°(t) satisfying

Equation (3.8), and an optimal trajectory x°(t) such that the Hamil-

ionian Equation (3.7) is maximized. That is

u(t)

lu(t)1_-M
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From. this equation we may derive

1u°(t, n) = (3. lO)
o for ]lr°(t)B J< M

If ]_°(t)B] = Z for a non-zero interval of time, then we again have

a singular control situation. Singular sub arcs of an optimal tra-

jectory occur in cases where H is not explicitly a function of the

control variable u(t) during a finite length of time. In this section

such a case arises for ITr°(t)BI = M identically.

Open loop synthesis of the optimal control (in the non-

singular case) could be achieved if we knew _°(t).

The well known two point boundary value problem confronts

us here. A way of depicting it(due-- to Athanassiades20)is as follows:

RELAY WITH
DEAD ZONE

--_TA 7r(t) +M I u(t) i=Ax+Su J,,.x......._I-M

UNKNOWN I X(OI_,CURRENT STATETRANSFORMATION -"
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metrical approach. For the 71

section _(O)se c 3.2 = _Sec 3. i"

making this more explicit.

_°(t) is determined by an unknown transformation of the current

state, x(0). This relationship is expressed qualitatively in the

sketch above. However, the problem of finding _(t) quantitatively

still remains. Thus we are faced with a stumbling block to synthesis

comparable to that of the previous section.

This comparison is evident when we express the relationship

between the Pontryagin Maximum Principle and Neustadt' s geo-

of Section 3.1 and the _(t) of this

A simple Lemma will assist in

as

Lemma: Let _(t) be the characteristic matrix of _ = Ax.

• IO
Proof:L -JBydefinition _(t)-l_(t) = I

Differentiating obtain

Then

_(t)-l_(t) + _-l(t)_(t) = 0

_-l(t) = _ _l(t)A

proving the Lemma.

Using this Lemma, we can write the solution to Equation (3.8)

=(t)--_(o)_-l(t)

0

If _'(0) & _ __ _ is the initial condition of the adjoint corresponding

to the optimal solution satisfying the given initial conditions, then

Equation (3. 10) becomes

u°(t'_) = I M sgnITr_-l(t)Blo

which is identical to Equation (3.5).

(3.11)
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This section has demonstrated that with certain conventions

the control derived by application of the Pontryagin Maximum Prin-

ciple and that derived by Neustadt' s method are identical. However,

finding the vector _Sec. 3.1 = _(°)Sec. 3.2 still remains at the core

of the synthesis problem. For a rigorous derivation of the concepts

summarized in this and the previous section, the reader is referred
21

to Roxin.

3.3 Functional Analysis Approach

The application of functional analysis to optimal control

problems of various types is ably depicted by Kranc and Sarachik, z2

among others. This section treats only the highlights of the theory.

Its purpose is to indicate how the dual vector _ enters the theory

underlying the functional analysis approach and how it relates to the

previous two sections.

Equation (3.2) of the introduction states that _

T

- x(o) = y _-I(TIB u(T)dr
O

'Ior, by setting _- ()l_rB = h(r) = (-r),...,hm(r ,

-x(o) = fTh(r)u(,)dr (3. 12)
t2

O

We specialize our treatment to the single control input case in order

to simplify notation. The results to follow are easily generalized.

Define an arbitrary m-vector ?r such that

T

- _ • x(o) = _ _ • h(r)u(r)dr (3. 13)
_oNext write

TNote: Constant coefficient system is assumed here without loss of

generality.
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T

l- 7r. x(o){ = So 7r. h(_')u_,r)d-r ['ff " h( 'r) u( "r) ]d'r

where the second inequality is the Hblder Inequality and

IIU{Ip Ip

(3. 14)

(3.15)

0

(3. 16)

-1 -I
p +q =1

Consider the right-hand side of Equation (3.12) as a linear functional

defined over a function space E = Lq(O, T) with the property that

-,T
/

f(hi) = -x.(o) = _hi(_)u(_)dT i = 1,2, m
i " " " $

%

This functional is said to map E into a conjugate space E* con-

sisting of all functions u(t) with p norm defined by (3. 15). It can

be shown that {{f{{ = {{U{{p. Our problem is now one of finding a

functional f of least norm having a finite number of given

"moments," - xi(o) , i = 1, 2,... ,m (Neustadt Reference 23). The

vector _r such that -lr • x(o) = 1 will define a subspace. The norm

found over this subspace equals the norm over the entire (infinite

dimensional) space by the Hahn Banach Theorem. This problem was

solved abstractly by Krein. 24 Krein' s work gives a necessary and

sufficient condition for the existence of f, i. e., f can be found if

and only if

Min {{Tr" h[[ = M(T)-> 1

11
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such that

• x(o) = - I

If the norm lIw" hll is properly chosen, e.g., as a q norm

with q = i, we have a linear programming formulation of the mini-

mum fuel problem already. However, as q = i, p = oo certain

mathematical difficulties in Banach space occur. These have to do

with u(t) approaching an impulse as p approaches oo This

problem does not arise in the discrete time case and hence will not

be further discussed here.

From (3.14) we can state

lull>- I-_. x(o)l (3 _7)
P II_'hll

q

so that

I- ,r. x(o)] (3 18)
Min llUllp =

ll_'hlq

for all including the "worst case, " that is when

]- _ •x(o)l
= Max (3. 19)

Min llUllp = II=" hllq

By straightforward manipulation, this yields

1-'n" • X(O) l 1
Max = Max

• _ II_" hllq";r llfr h IIq
• x(o) = - I

or

MinlluII
p Min 11= "hll

7[ " x(o) = - 1

q

(3.20)
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Thus the determination of the minimum of llu]l reduces to finding
P

that w which minimizes II w, hll under the constraint w" x(o) = 1
q

(exactly as for Krein' s "L Problem").

For Equation (3.19) to hold as an equality, the HSlder

relation, Equation (3.14), must hold as an equality. Kranc and

Sarachlk 22 show that this occurs when

IT. q-1

u(t)= h(')l[q]q sgn h(,)]
(3.21)

With some additional mathematical reasoning, it can be shown that

when q = i and p-_o

-r e(o, T)

If sup ]u(_)] = M, it is readily shown that
T)

so that Equation (3.2 I) becomes

u(t, 7r) = Ms gn[_. _-I(T)B]

M __

-i

II II

This is the control which minimizes llU[Ip if w is chosen in

accordance with Equation (3.20). When this control is used in

Equation (3. 12), the tradeoff between T and N1 may be easily

seen. As M is allowed to increase, the time required to drive

the plant %o zero will decrease. The tradeoff curve is monotonic

and continuous. It can be used to determine the Nlin T = TMi n for

a given control bound M. For this minimum time problem, the

functional analysis approach is very effective.

Unfortunately the minimum fuel problem is not so easily

handled. For a given T > TMi n, and a given M, there is freedom

to choose trajectories which minimize C the amount of fuel used,
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where
T

c= lu< )ld = IluiI 1

With the Geometric and the Maximum Principle techniques we were

able to identify "coast times," i.e., times when u(t) = O. When the

function space methods of this section are applied, however, one

cannot bound the magnitude of the control when p = i. The control

law derived by setting p = 1 and q ==o represents C ideally, but

prescribes impulses at those points, _-i, where sup I7r, h(7) I
(o, T)

is attained. Thus, the functional analysis approach to the minimum

fuel problem with bounded control remains yet to be developed.

Swiger 25 presents a numerical attack on this problem. Chapter V,

concerned with the discrete time case, shows how linear program-

ming can be employed.

The main purpose of this section is to indicate the common-

ality of the functional analysis approach with the other techniques of

this chapter. This commonality centers around the "Lagrange Multi-

plier" properties of the dual vector lr. These properties will be

interpreted further in the chapters to follow.

3.4 Generalized Programming Approach

Dantzig 14 and Van Slyke 26 were the first to apply the methods

of generalized programming and decomposition to arrive at the

Maximum Principle. This section applies their results to the mini-

mum fuel problem, and demonstrates the unity of these programming

methods with the three previously described approaches to control

optimization. The analysis employs the material of Sections 2.6 and

2.7.

Consider Equation (3.2) and the convex set fI(T) depicted in

Figure 3-1
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Letting

T

- x(o) = y _-I (_')Bu(T)d_-
O

T

C(T) = Yo [u(T) [aT, we define the following:

(3.22)

Q __

so that

- Xl(O)

- x2(o)

- Xm(O)

0

i u

0

0

+z
0

-1

(3.23)

zU +P = Q (3.24)

where P is an element of the convex set f_(T) generated by choos-

ing all possible u(t) such that [u(t)[ <- M. As will be seen, we are

searching for that column vector P = P* which corresponds to

point b of Figure 3-1. Note that the cost functional has been

labeled the (m+l)st equation as in previous, sections.

With the definitions and conventions prescribed above, a

generalized program for the problem at hand can be formulated.

such a program the column vectors of coefficients are variable -

selected from a convex set, say f_(T). The rules of the simplex

optimization algorithm are employed to determine which column

In
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vector should be selected to decrease the cost functional. These

rules, when applied to the generalized programming problem,

amount to the same conditions for optimality derived by way of the

Maximum Principle.

A generalized linear programming problem is of the following

form (Reference 6):

Minimize z such that zU + P = Q (3.25)

where the terms are those defined in Equations (3.23 and 3.24).

P is any point in the convex set _(T), not necessarily the

one which permits z to obtain its minimum. We can express P as

follows:
t t

P = _k P j, _ k. = 1 k.> O, t> m +1
j=l J j=l J ' J

where PJ are any other points in the convex set. Equation (3.25)

can be rewritten as an equivalent problem

Find X, ki-> 0 i = 1,2,...,t

t
4

To minimize z such that zU + _ _.. PJ = Q
j=l J

(3.26)

t

j_=l kj = 1, PJ e_(T)

The dual of this problem is expressed as in Section 2.6

Find w, w. unrestricted in sign, i = 1,2,...,m+l
1

To maximize - v+w Q such that (3.27)

P-v < 0 for all P¢_(T)

One can readily see that setting the y of this section equal to _ of
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Section 3.1 and Figure 3-i, that lIP -v = 0 of Equation (3.27) is

the equation for the hyperplane of support depicted in Figure 3-i.
A

Thus, _Sec. 3.4 = WSec. 3. I" Further, the dual problem constraint,

Equation (3.27),

7rP - v -<0 for all PeQ(T)

is precisely the condition for optimality derived geometrically in

^ A
Neustadt' s approach. The optimal v = w b, where I[ and b are

from Figure 3-i.

A constructive derivation of the Maximum Principle ensues

directly from the algorithm for solving a generalized programming

problem. This algorithm assumes we have initially on hand

t_>m+l choices PJ e _2(T) such that

ZUo + XIPI+A2 P2 + .... +At Pt =Q (3.28)

X 1 +X 2 + .... +A. t = 1

has a feasible solution k° >-0. The pO = _ ko _ may correspond
J

to the point _ of Figure 3-i and hence not be optimal. In order to

obtain this initial feasible solution, we employ the Phase I starting

procedure mentioned in the previous chapter. In the process of

obtaining the initial )L° we also obtain an initial set of dual variables

o (_.o o o _ and the scalar11" = i' w2'''" Wm+l v These are the variables

of a problem which is dual to Equation (3.9.8). This dual is written

out as Equation (2.35) of the previous chapter.

O
Given an initial "price" vector I[ our task will be to find a

(t + l)st column which, when substituted for one of the PJ in Equa-

tion (3.28), will yield a lower value for z.

The decomposition technique described in Section 2.7 calls

for solving the subproblem
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j =t + 1,2,...

From this, a new PJ is constructed and adjoined to equation set

(3.28). Thereafter the simplex algorithm is applied to the aug-

mented set, Equation (3.28), to result in removal of a column pS,

s = {I,2, .... t} indicated by X s = 0 in the new solution. A new
k

price vector _ is simultaneously generated and the process is

repeated until all kpk > 0, k = t + i, t +2, ....

If _2 is a convex polyhedron the process will yield an optimal

solution in a finite number of steps. If _2 is strictly convex the

k pk * p*and will approach their optimal values w and mono-

tonically.

When developed as above, the

property that

* p*_*P< 7r = v for all

y':' has the fundamental

Pe _(T)

But note that

pJ=

m

Tc-I(T)BuJ(_)d r
0 for some luJ(t) I < M

and the criterion for entering

master program, k > t +1 is

j =t+l, t+2,... in the kth
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Max

Pc _(T)

I_'I_'2 _m _m+l] T_ 1

(T)

T

U( T)dT

_T

MaxM

B u(_')d-r

(3.29)

where _m+l-- - 1 and _ is the corresponding adjoint initial condi-

tion of Section 3.2. The criterion for optimality expressed by Equa-

tion (3.29) above, is equivalent to the Maximum Principle' s

necessary condition expressed by Equation (3.9).

For a more complete treatment of generalized programming,

the reader is referred to Dantzig 6 and Van Slyke. 26 In those trea-

tises it is shown that generalized programming converges under

conditions which are general enough to be useful in control optlmi-

zation problems.

A discrete time problem illustrating the theory developed in

this section will be solved in Chapter V.

One added note to this section is worthy of attention. The

vector Q, as defined in Equation (3.23), is the initial condition

vector, a point in state space. It is easily seen that Q may be

handled exactly as P in the algorithm. Hence it is possible to

specify Q as a convex set, the set of allowable initial (or terminal)

conditions.



CHAPTER IV

LINEAR PROGRAMMING COMPUTATION OF
MINIMUM FUEL CONTROL SEQUENCES

4.0 Introduction

The preceding chapter outlined the theory underlying

computation of fuel optimal control laws for systems modeled with

time as an independent continuous variable. In such representations,

the control force magnitude may change anywhere in the time con-

tinuum.

This chapter introduces a computational method for the

discrete time, or sampled data, case. Here the control magnitude

is permitted to change only at pre-specified discrete points.

The discrete control process arises naturally when a digital

computer is to be used to generate the required control inputs. In

other instances, the nature of the system being modeled requires

that time be considered a discrete sequence, as for example, in

inventory control. Then too, there exist physical systems wherein

data upon which to base control computations, are available only

intermittently. In these truly "sampled data" cases, it may also be

advantageous to permit the control to change only at intermittent

points. As control theory grows, the number of applications re-

quiring discrete time analysis and computation will grow also.

The Linear Programming computation method to be intro-

duced in this chapter is suitable for certain types of discrete time

dynamic systems. In this report a computational method for mini-

mum fuel optimal control will be developed. Small scale compu-

tations on experimental problems in this and the next chapter will

illustrate the procedure. This will set the groundwork for the

60
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larger scale orbital rendezvous control computation of Chapter VI.

We first derive the required difference equations.

4.1 Formation of Difference Equations

Let the state differential equation of the system to be con-

trolled be as follows

Then

(t):A (t)y(t)+ B (t)u(t)

y (t) : _)(t, t o) y(t o) + c_(t, t o)

(4.1)

t t _-l(_',t o) B(_') u(_')d_"

O

or

y(t) =¢(t, to) y(to) +

t

_t 4)(to,"r)B(7) u(_-)d'r

0

Assume that the control

tk so that

u(7"): u(k)

u(t) can change only at instants of time

for tk < _" <tk+ 1

Thus

Y(tk+ I) = _(tk+ 1, t k) Y(t k) +

St tk+l

k _)(tk+l' T) B(m) u(T)d_"

Letting Y(tk+ 1) = y(k+l) we obtain

[- (.tk+l _)d-]_.j

y(k+l) = ¢(tk+ 1, tk) y(k) +['l'k_(tk+l'-t _') B(

u(k)

Next define

¢(tk+ 1, t k)

[_ tk+l
tk _(tk+l'

A A(k)

T) B(T)dT 1 :A B(k)
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So that the discrete form of the differential system Equation (4. i)

becomes

y(k+l) = A(k) y(k) + B(k) u(k) (4.2)

If the original differential equation has constant coefficients

the following simplification is possible. By setting T = tk+ I- t k

_(tk+l, tic)= _I(k+l)T- kT; =_(T) A A

(k+l)_[(k+l)T_ T]B lifTFf__ :
L kT o

With these definitions, we obtain the constant coefficient discrete

counterpart of Equations (4.1 and 4.2) namely

y(k+l) = A y(k) + B u(k) (4.3)

To avoid confusion, we must note that the symbols A, A(t), and

A(k) in Equations (4.3, 4.2, and 4. i) are different and distinct

matrices. This is also true for B, B(t), and B(k).

We may now consider the state changes in our controlled

system to be governed by the difference equation:

y(k+l) = A(k) y(k) + B(k) u(k) (4.4)

where y(k) is an m-dimensional state vector; u(k) is an r-dimen-

sional input vector. A(k) is an mxm matrix which may vary with

the time index k, or be a constant. Similarly B(k) is an mxr

matrix with dependence on time index k, or a constant.

The terminal state y(K) can be computed from y(0), the

initial state, and u(k), the input sequence, by the relation

y(K) = FI A(j) y(0) + E A(i) B(j) u(j) (4. 5)

j:o j:o I i:j+l
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where A(i) = I for i = K - I. For constant matrices

the corresponding relation is written

K-I

y(K) =A Ky(0) + _ A K-I -j B u(j)

j=0

A and B,

(4.6)

One form of terminal control problem considers y(k) and

y(0) as fixed final and initial conditions, respectively. The integer

K, corresponding to the final time, may be fixed or free.

A

matrix.

in Equation (4.6) is a non-singular constant transition

Equation (4.6) may therefore be written:

K-I
_K

A y(K) - y(0) = _, A-3B u(j) (4.7)

j=0

If y(k) = 0, the expression

K-I

_ y_ 0_ = +
j=0

A -1-jB u(j) (4.8)

represents all the initial states y(0) from which equilibrium

(y(K) = 0) can be reached in K discrete time periods with an
g

appropriate sequence of control inputs _u(j)}.

Define the matrix R(j)

R(j) = A-I-JB

as:

(4.9)

and also note the recursion relation:

-i
R(j+I) = A R(j) (4. 10)

With this definition Equation (4.8) may be written as follows:

K-I

-y(0) = _ R(j) u(j)

j=0

(4.1 I)

Here y(0) is an m-vector; R(j) is an mxr matrix and u(j) is the

r-vector representing multiple control of the plant at sample time j.
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Case I Single Control: For the single control input, u(j) is

a scalar and B, in Equation (4.9), an m-vector. With this conven-

tion R(j) defined in Equation (4.9) is perforce an m-vector. Equa-

tion (4. ii) thus appears as

-- Yl(0)-

- Y2(0)

J u

rl(O)

: r2(0)

(o)
m _

u(O) + • • +

rl(K-1)-

r2(K-l)

rm(K-i !

u(K-l)

or more concisely as

-y(0) = [R]u =

K-I

Z
j=0

r(j) u(j) (4. 12)

where y(0) is an m-vector at sample time zero, and

[R] is an (mxK) - matrix

r(j) is the jth column vector of [R]

u(j) is a scalar, the jth component of the K-vector U

Case II Multiple Control: For situations involving more

than one independent input (multiple control), a slightly different

notation is useful.

-i
- y(0) = A

-2
B u(0) + A B u(1) + .....

To develop it, expand Equation (4. II) as follows

-K
+ A B u(K-l)

-y(0) = R(0) u(0) + R(1) u(1) + ..... + R(K-1) u(K-l)

(4. 13)

where now

-1
R(0) = A B

-I
R(j+I) = A R(j)

(4. 14)

and
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R(j) is an (m x r) - matrix

u(j) is an(r x 1) - vector

The Case II, multiple control, notation for

in Chapter VI.

4.2

r = 2 will be required

Linear Programming Approach

Consider the control of a plant whose behavior is charac-

terized by the difference equation

y(k+l) = A y(k) + B u(k)

where y(k), k = 0, i, .... K is an m-vector, and u(k),

k = 0, I, ..., K-I an r-vector. To simplify the presentation, con-

sider the single control input case where u(k) is a scalar quantity.

The development to follow holds in both the single as well as mul-

tiple input case. However, in the multiple input case, the arith-

metic complexity of the problem grows with increased r.

As seen in the preceding section when y(K) = 0 and y(0)

are given, the following relation holds

K-I

- y(0) = _ A-I-JBu(j)

j--0

R(j) =A-I-j B

(4.15)

results. Here y(0) is an m-vector, r(j) is an m-vector, but u(j)

is a scalar. The matrix [R] is (m x K). Vector u, in this context,

K-1

- y(0) = _ r(j) u(j) = [R]u (4. 17)

j=0

The expression

Letting

(4. 16)
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becomes a K-vector with components u(j). To clarify, expand

Equation (4) as follows:

Yl (0)

- Y2(0)
I

t

I

- Ym(O)

D

rl0

r20
I
I

t

r I
mo

m

r ..... r

11

r21

m

I(K-1)
I

$

i

I

I

rm(K-1)

u(O)

u(1)

u(K-l)

(4.18)

The m-vector y(0) on the left hand side represents the initial con-

dition in which the plant is found at the time when the control se -

quence {u(k)} is to begin. This sequence is to return the plant to

its equilibrium state, y(K) = 0, in a fixed length of time corre-

sponding to K sampling periods. It must do this using minimum

fuel where fuel performance is measured by

K-1

P(K) = 2 lu(j) [T where W = sampling period

j:0

(4.19)

This is a type of minimum effort final value control problem which

is solvable by linear programming. Consider the following sub-

stitution. Let

u(j) : u: - u." u I. and ul. ' > 0
] ] .] J

Then

K-I
/

j=0 ]

For a given j, u I. and u') produce linearly dependent column
] ]

vectors in the resulting constraint equation matrix. Hence a basic

solution cannot contain both u [ and u'.' as non-zero components.
3 J
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Hence
K-I K-I

P: 2 lu(j) 2
j =o j =o J /

The LP computational form, equivalent to the discrete time

minimum fuel problem, can now be stated. Setting T = 1 without

loss of generality, we have the following primal and dual statements:

Primal:

(a) Find u = (u_-u_, u_-u_,...,u__ 1 -U__l)

(b) Subject to - y(0) = [R]u and

u: u" > 0 j =0,1,2, (K-l) (4 21)
j" j "", .

(c) To minimize

p _

K-I

%
j =i J/

Dual:

(a) Find 7r = (Trl,Tr2,- .... 7rm)

(b) Subject to _ [R] -< [1, 1,

(e) To maximize

..... 1] (4.22)

D

m

_, - Yi(O) Iri
i=l

The ordinary simplex method, as well as many of its variations

can be used to solve both the primal and dual problems in the same

computer run. If an optimal solution exists, Pmin must equal

D The Primal and Dual Problems are characterized in the
max"

following tableau.
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7rI

_,2
I
I
I
I

w
m

u"0 Uk-1 U_[-1

(rlO) (- rio) (rl, K-1 ) (- rl, K_l )

I

(r20) (- r20) , ',

! ! I
I I t

I I l
[ [ !

(rm0) (- rm0) .... (rm_K-1) (- rm, K-1

1 1 1 1

- Yl(O)

- Y2(O)

[

[

[

- Ym(O)

(4.23)

4.3 Manual Computation Illustrated

In this section we shall illustrate the LP formulation of the

minimum fuel problem with a simple hand calculated example. Pivot

reduction will be used to execute the matrix operations described

in Section 2.3. The reader is referred to Gass 27 for a more

detailed description of manual calculations in Linear Programming.

Let the plant be governed by Equation (4.15) where

i ..

For K = 3 (Equation (4.17) becomes

u(2) (4.24)

We wish to minimize

P(3)= lu(o)l+ lu< )l+ lu(2)l (4.25)

Calculation for this problem are outlined in Computation Summary I.

The hand calculation method begins by expressing the constraint

equations, Equation (4.24), in detached matrix form as follows:



69

e 1

e 2

ub %. -y(o 
3 -3 9 -9 27 _27 -10

2 -2 4 -4 8 - 8 - 2

e I e 2

1 0

0 1

(4.26)

where e 1 and e 2 represent unit column vectors. The variables

listed along the top outer row are those of interest in the problem.

A pivot operation has the effect of replacing a variable in the left

outer column with one from the top row. Pivot elements are circled

in Tableau A. Thus, in the first array, the pivot element (_,

indicates that e I in the left outer column is to be replaced by u_.

In the third array of Tableau A, two pivot operations have

been completed. The constraints are in Canonical Form with u_

and u_ basic. By taking the inner product of each row with the top

row, and by setting the non-basic variables u_, u_, u_, u_. to

zero, we obtain a basic feasible solution u_ = 11/3, u_ = 7/3.

At this point we have completed the equivalent of Phase I of

the Simplex method. In terms of the derivation provided in Section

2. 3_ we have accomplished the following:

(a)

(b)

Starting with the given constraints as in Equation (4.21)

[R] _1 = {-y(0)}; [I] = {el}+ {e2}

-1
Apply the operator B to obtain

I

UB-I=u {- B-Iy(o)};[B-II] = {B-lel} +
{B-le2}

RNB refers to the non-basic part of the tranformed [R] matrix.
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With the foregoing in mind, the third array in Tableau A may be

keyed to the following diagram (after appropriate column rearrange-

ment) :

where

*- UB-* , -- uR-

T i,B -i

U_B I l RNB
I

-y(0) _ e I e 2

-B-I y(0) _ B-I
(4.27)

The optimization procedure may now be stated. This is

done in Tableaus B and C. Referring to Section 2.3, we calculate

the scalar _j for each column of,the array. Our cost coefficients

in this problem all equal 1.0. Hence CB=[1, 1]. The scalar _j

is recorded as shown in Tableau B.

Also recorded in Tableau B is the quantity _j- c..J

Furthermore, from Equation (2. 13)

c. =- (_j-cj) (4.28)J

We are now in position to apply the column selection rule of Section

2.2: Choose as a candidate for the basic feasible solution that

column s such that

c = Minc. < 0 (4.29)

s j 3

This implies that we choose that column in Tableau B such that

(_s= Cs) = Max (_j-cj) >0 (4.30)
J

We see that the column under u_. meets this criterion. Application

of the row selection rule then leads to designation of the element

+ 5 as a pivot element.
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(_j- )-< 0Tableau C completes the computation. All cj

and an optimal solution has been obtained. If the detached coef-

ficients in the lines designated by arrows at the left of Tableau C,

were rewritten with their variables, we would have the Optimal

Canonical Form of Equation (2.7). Note, however, that some

(%-c.]_ : 0 i_dio_ing_h,_o_he=solu_io_e_ _i_hfuelcos_J

equal to the minimum. As an example the control, u(1) = + 13/18,

u(2) = - 11/18 (derived by pivoting on + 6/5), is also an optimal

solution.

Another significant output of Tableau C is the dual solution.

= c BB = - 1/3 , + 1 (4.31)

These dual variables will be used in the work to follow.

COMPUTATION SUMMARY ITEST PROBLEM: SECTION 4.3

Constraints :

- yl(0)

- y2(0)

C -u'o)+0

Performance Criterion:

Minimize P = ]uO] + lUll + lu2]

or P= lu°-U,,ol+fu_-u_I+luh-u_J

u' u" ->0 and not both different from
j' j

zero for same j = 0, i,2.
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COMPUTATION SUMMARY I (Continued)

TABLEAU A

e
i

e2

e2

u' u" u_, u" - y(0) e I e20 -0 u_ u_ 2

1 -I

0 0

1 -I

0 0

0 0

-i I

27 - 27

8 - 8

9 - 9

-i0 + I0

+ 6

+ 5

10/3

+ 14/3

+ 11/3

+ 7/3

1 0

0 1

1/3 0

2/3 1

- 2/3

- 1/3

3/2

1/2

End Phase I: Feasible Solution is

u_ : + 11/3 u_ : +7/3

Begin Phase II: Calculate Min P

TABLEAU B

_j

_j-c.3

0

1

- y(O)

6 + 6 + 11/3

+7/3

- Ii + ii

-12 +i0

+ 18/13

e I e 2

- 2/3

-1/3

- 1

3/2

i/2

+2
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COMPUTATION SUMMARY I (Continued)

TABLEAU C

3

0

6/5 -6/5

- 1/5 1/5

-i +I

-2 0

- y(O)

13/15

7/15

413

I el e 2

-4/15

- 1/15

- 1/3

7rI

9/10

1/lo

7r2

Solution:

Trajectory:

_'i = - 1 3, 7r2

u(0) = + 13/15,

Min P = 4/3

= +i

u(1) = 0, u(2): - 7/15

MaxD= - i0_ 1 - 2_ 2 = 413

Y2
u(0) = 13/15

u(1)= 0

u(2) : - 7/15_

___'- (10.2)

. (4.2, 1.9)
,,_fl. 4, O. 9)

Yl

4.4

END COMPUTATION SUMiVLARY I

0 0

Machine Computation Illustrated

<>

The last section demonstrated the manual calculation of

fuel optimal controls for the system given by Equation (4. 15) with

K = 3, and
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I 3°JE]A -- B -- y(0) = (4.32)

i/

No constraint was imposed on the magnitude of u(j). This section

will present the results of machine computation of optimal control

sequences for the same system with K = i0, and with bounded

control ]U(_) I < 1, j = 0, 1,2,...,9.

The "i3 Linear and Separable Programming System" at the

University of California, Berkeley, was used to make these calcu-

lations. The M3 code employs the revised simplex method in which

the inverse (B -1) is maintained in product form. 27 Problems with

up to 300 rows and 4000 variables can be handled by the M3 system.

The test problem presented here by no means taxes the M3 code' s

computing power and versatility. The calculations were made

merely to check out machine procedures, and to determine the

general characteristics of control laws derived by the LP method.

Computation Summary II lists runs were made without diffi-

culty. Representative control functions and trajectories for Run

Numbers I, 3, 5, and 7 are sketched in Computation Summary If.

Because of the scaling difficulties in presenting the entire trajectory

only the terminal portions, beginning with k = 4 are depicted. It

should be noted that the "relay with dead zone" characteristic does

not appear in these control sequences as it would in a continuous

time case. Instead, the control sequence always contains an inter-

mediate value of control magnitude. Lindorff 28 discusses this

phenomenon for the sampled data minimum time control solution.



75

0

I.--I

oo
E_

0

o
',--I

A

+ + + + + + + l i , i l l , ,

_ _o o o o o o o o o o o o oo o
• ° • ° ° ° °

_._ i i i i i x i + + + + + + + +

•_ co 0o

14 _" 0 0 0 0 0 0 0 o ¢o 0 0 0 0 0 0• • °
" ,-4 _ _ _ _ ,-4 ,-4 ,4 _i _ ,4,VI

F._ , i i i , i z -I- + + + + + +

b- _0 O_ L_ I--I b- 0 0 0"I
I--.I II _ O_ C_) CO _0 CO b-

_-I _ I I l I I I

D

0

r,p
r.q

0 0 0 0 0

+ + + + + +

°°

0

0
0 r..q

_-_ 0 0 0 0 0 0 0 0 0 00 ,-_ _14 cO ,-_ 0
u'_ o_ 0q _ o o

+ + + + +

_Q
0

_D

o
1--4

_A o
_v

0
0

o

d

I0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

-I- + + + + + -I- + +



76

v

81

t

A

v

O

A

_8

_I
A

0

0

0

m

IiiiII

A

0
0

+

0

+

v

eJ

A

0
0

+ _-

0
0

+

v

O

@

r/1

0

0
rj

o

o



77

4. 5 Application of Dual Problem Analysis

The dual of the problem treated in Section 4.3 offers an

opportunity to demonstrate a design technique for a closed loop

sampled data system. This design will cause the system to be

nulled in exactly K sample times with minimum fuel. The tech-

nique demonstrated here is a graphical one limited to second order

systems without control bounds.

For the second order system of Section 4.3, the dual problem

constraints may be plotted as in Figure 4-2. The convex set of dual

feasible solutions appears as the shaded area. For K = 3 there are

three "negative" constraint lines and three "positive" ones, corre-

sponding to column vectors associated with u'.' and u: respectively.
J J

For the system parameters A and B given in Section 4.3, the set of

feasible dual solutions has four extreme points. Since the cost

function and constraints are linear, the optimum solution to the

dual problem, 7r = 7r''_, must lie at one of these extreme points.

From Section 2.3 and Equation (4.31) we know that

_'_ = c B B -1 = [1, 1] B -1 (4.33)

The cost coefficients of the primal problem all equal 1.0. Hence

c B = [1,1], no matter what components of u = [u_ u_ u_. u_ u_ u_]

are basic.

If the primal solution, yielding the minimum fuel cost, were

-1
unique, there would be a unique B for each y(0). The corre-

sponding control sequence would be given by

_':_ -i
u = - B y(0) (4.34)

However, when the primal solution is not unique,
-1

B(i ) , i-> 2 which yield

there are several
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U_l" _ 1

" = - B(i) y(0) such that _ lu(j)I is minimized.

J

For example, in the problems of Section 4.3, the two control

u(1) = i-5-' 0 , 15

• ( 13 ii)u(2) -- o, FS--'

sequences

will both null y(0) = [i0, 2]T at a minimum fuel cost,

There are others.

-i

ent B(i) "

(4.35)

4
P(K) = -.

3

Corresponding to each of them, there is a differ-

For the ease at hand

1 EliB( = and B(2 ) = (4.36)

f-o--d

such that

-1) I11 * "1) I11• = B( and u(2 ) = B(u(1) (4.37)

yield different trajectories with the same fuel usage.

Returning now to the dual problem graphed in Figure 4-2, we

1 i] is one of four optimal solutionsobserve that the point II* = [ - _-,
1

which maximizes D = - y y(0). To the extreme point [ - 3-, I] there
-I -I -i

correspond several B(i ) , i > 2. Two, B(1 ) and B(2 ) , are stated

in the previous paragraph. Let us arbitrarily select one of them,

k, such that k e {i} . Now, from Equation (4.33)

_(k) = CB B(k) = - 3' ; k c

Note that _(k) is an optimal solution to the dual for a wide

range of initial conditions y(0). This range is labled R(k),

k = I, 2, 3, 4, in Figure 4-3. In Figure 4-3 there also appears an
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optimal 7r(k ) for each range R(k ) in which y(0) is located. Each
".-" - I

7r(k ) , k : i, 2, 3, 4 has an associated B(k ) which can be used to

compute the fuel optimum control sequence. Thus,

c - * = (k, y(0))y(0) R(k )_ Ir(k ) y(0) DMa x

DMa x (k, y(0)) = PMin (k, y(0)), k = 1,2, 3,4

(4.38)

The end product of our dual analysis has been the observation

that, for each R(i ) i = 1, 2, 3, 4 , a different (not necessarily unique)

B(i ) exists such that the fuel optimal control sequence u" can be

computed from

U(k ) = B(k ) y(0) y(0) e R(k ) (4.39)

Thus the optimal control is linear within each of the regions R(k ) .

For closed loop design we need only select the appropriate
-i

B(k ) . Thus the two dimensional property of the dual permits the

following graphical determination of the regions R(k ). From

Figure 4-3, we determine the following

and

- 3 Yl(0) + Y2(0) < 0

+ 4 Yl(0) - 9 Y2(0) >- 0

- y(0) c R(I )

- 3 Yl(0) + Y2(0) _ 0 /

and + 4 Yl(0) - 9 Y2(0) >- 0 (4.40)

3-Y (0) c R(2 )

and

- 3 Yl(0) + Y2(0) _ 0 l==)-

/
+ 4 Yl(0) - 9 Y2(0) < 0

y(0) c R(3 )

- 3 Yl(0) + Y2(0) < 0
and + 4 Yl(0) - 9 Y2(0) < 0

- y(0) _ R(4 )
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-i
It remains only to determine the B(k ) for each of these regions.

-i

B(1 ) corresponding to initial condition y(0) = [10, 2] is available

from Tableau C of Computation Summary I, that is

_ I14115 9111]B(II) : 1115 iii

-I

To find B(4 ) we use the same computation schemata as given in

Section 4.3 but with a different y(0) - one for which - y(0) is in

the range Rt4_._, Let us choose y(0) = [i0, i0] T so that

-y(0) = [-I0, -i0] T e R,4_._J Repeating the procedure for Rt3_ J and

R(2 ) we obtain

Ii ¢°iI-i -I 15

B(1) = B(2) =

1--5 i-O]

-i -i 1"5 -

B(3 ) = B(4 ) :

(4.41)

The schemata and trajectories associated with these results are

shown in Computation Summary III. Our "closed loop" design may

be represented as in Part F of Computation Summary III.
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--O O
COMPUTATION SUMMARY III

TEST PROBLEM: SECTION 4.5

_

(A) Starting with:

% u_ _ u_ u_ u_
3 - 3 9 - 9 27 - 27

2 -2 4 -4 8 - 8

Column (i)

(3)

(4)

(2)

(i) (3) (4) (2) e I e 2

- i0 +i0 -i0 +i0

- 2 + 2 510 +10

1 0

0 1

corresponds to - y(0) = [ -I0, -2]TcR(1)Figure 4-2

corresponds to - y(0) = [+I0, +2] T eR(3 ) Figure 4-2

corresponds to - y(0) = [-i0, -10]TeR(4)Figure 4-2

corresponds to - y(0) = [+i0, +10]TeR(2)Figure 4-2

(B)

%

I!
u2

u_

%.

Apply Pivot Reductions to obtain:

% u_ u_ u_ _ u_.
6 6

1 -i 0 0
5 5

1 1
o o -_ _-o i

6 6

-I i -_ _ o o

1 1
0 0 l -i

5 5

(1) (3) (4) (2)

13 13 19 19
4

15 15 3 3

7 7 1 1
1--5 " 15 3 + 3

e I e 2 [

4 9

15 i0

1 1

l015

13 13 19 19 4 9

15 15 3 3 15 i0

7 7 1 1 1 1

15 15 3 3 15 i0

(c) Results:

For 4 Yl(0)__ - 9 Y2(0)_ -> 0

Fo___rr 4Yl(0) - 9 Y2(0) <0
-1 -1

B(3 ) = B(4 ) =

14115

1

15 _J

4 9

I0

1
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COMPUTATION SUMMARY III (Continued)

(D) Trajectories T 1, T 2, T 3

_ol- [-,o,,,]_

T 3

I0

(-9.6, 4.3)

(E) Example: Trajectory T 3

y(0) : [-i0, 41 ; 4 Yl(0) - 9 Y2(0) = - 76 < 0::::_- y(0) E R(3 )

Therefore B(3 ) =

L_ _J

" E Iu : B(3 ) : _-_, ===> u(0) = -

u(1)
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COMPUTATION SUMMARY Ill (Continued)

(F) Closed Loop Representation

i

0

I

2

a(i) /_(i)

-4/5 9/10

0 0

-I/15 1/10

DISTURBANCE

i
PLANT

y_(0)

_INIT yl(k)
Y2(k)

IALIZE

T, I SET i=O

Y2 (0) '

END COMPUTATION SUMMARY III

(> 0



CHAPTER V

MINIMUM FUEL OPTIMAL CONTROL -

DISCRETE TIME CASE

5.0 Introduction

This chapter parallels the treatment of the continuous time

minimum fuel optimization problem presented in Chapter III. The

geometric, the maximum principle, the functional analysis, and the

generalized programming approaches discussed there, will be treated

here for the discrete time case. The relationship between the four

approaches will be demonstrated by means of the numerical example

introduced in the previous chapter.

5. i Geometric Approach

In this section, the implications of attempting to use

Neustadt I s "Geometric Approach" for the discrete time case will be

stated. When the convex set of recoverable states _(T), is generated

by a differential equation system, a "smooth '''_ boundary for [2(T)

In ( nd if n<T  t iotly oon ex), unique
optimal control law can be defined. On the other hand, the set _2(K)

generated by a difference equation system is a convex polyhedron.

Figure 5-i depicting fZ(K) is the discrete time version of Figure 3-i.
A

The sketch shows the possibility of having the same w (same hyper-

plane of support) for a finite range of initial conditions, R.

Now consider the use of the geometric approach to compute

the optimal control sequence {u*(k)} for the following system

y(k+l) = A y(k) + B u(k) (5. i)

SNore: A "smooth" boundary is taken here as one with a continuous

first derivative.

86
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C: Ym+l

K-I

C(K)= _lu(j)l
j=O

i
Y

y(O)
I (STATE SPACE)

_',---HYPERPLANE OF SUPPORT
_" y(O) =v

THE CONVEX POLYHEDRON _2(K)

FIGURE 5-1
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The initial state y(0) is to be nulled in three time periods, and

2

z = _ In(j)] is to be minimized. The steepest ascent method

j:0
described in the last few paragraphs of Section 3.1 might be

attempted. The discrete time version of Equation (3.6) is

2

j=0

Hence the recurrence relation for

(5.2)

_(i) in Equation (3.7) becomes

-i-j B u(j, ?T(i))]
(5.3)

?T(i+l) -TT (i) [ y(0) 7._2= -k + ,, A

j:O

The method (refer to Chapter III) calls for an initial guess =(0) to

be made and the recursion relation Equation (5.3) to be solved until

* U*_(i+l)_, w(i). From W we obtain . In the continuous time case

(with strictly convex f_(T)] the optimal control u* is a bi-unique
% l

"smooth" function of 7[* But for discrete time, this is not so. As

seen in Figure 5-i, a range of state space labeled R is associated

with the same value of 7T. Even if Equation (5.3) could produce this

value of w, we would still require another computing step to find the

control magnitude u(j) which would cause the trajectory to match

the given initial condition within R.

From a Linear Programming point of view, Neustadt' s method

undertakes the problem of optimal control computation by calling for

the solution to the dual problem. However, as should be expected

from the foregoing observations, the analogy breaks down when the

discrete-time minimum fuel problem is attempted. If the relationship

between _*, the initial condition y(0), and the optimal control u

is not unique; we do not automatically satisfy the prescribed system

equation end conditions. This difficulty might be remedied by de-

veloping supplemental necessary conditions, and by adding steps to
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the computations required under the geometric approach. However,

this would lead us too far afield. Hence, a numerical example for

the discrete time version of the geometric approach will not be

carried out. Instead we will proceed immediately to examples for the

discrete maximum principle, the functional analysis approach, and

generalize d programming.

5.2 Maximum Principle Approach

To introduce notation, this section begins with a statement of

the Discrete Maximum Principle paralleling that given by Kleinrnan
29

and Athens.

Theorem: MAXIMUM PRINCIPLE FOR DISCRETE SYSTEMS

(i) Given a system of difference equations

y(k+l) - y(k) = f(y(k), u(k)) (5.4)

where y and f are m dimensional column vectors.

Let _y':"(k), k = O, 1, ..., (k-l)} be the trajectory of the

given system corresponding to the optimal control se-

quence {u*(k)}, where Iu*(k) l < M. {u*(k)} drives

the system from an initial condition y(0) to a target

set in E called S.
m

(2) Then, in order that {u*(k)} minimize a cost functional
/

(x(k), u(k)) , it is necessary that there exist a se-
L

quence of m dimensional row vectors

{_(k), k = 0, l,...,(k-1)} called "costate" or "adjoint

Variables" such that

(A) The Hamiltonian scalar function

(r ,) (,- ,)H (k), lr'(k+l), u(k =lrm+lL "(k), u(k

(r )+ 7r'(k) f (k), u(k) (5.5)
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(B)

(c)

has an absolute maximum as a function ofu(k), ]u(k) I < M

at u(k) =u*(k) for everyk = 0,1,...,(k-l).

The evolution of y*(k) in time is given by the vector

difference equation

_*(k+l) - 1;*(k) = -

for all

{ *. *. . u*(k)_ /8-nky (k), ?r (k+l),

8 y(k)
(5.6)

k = 0, 1,..., (k-l).

is normal to the target set S = {y(k): gi[Y(k)] = 0

i = 1,2,...,k < m}, that is, there are real numbers

_i' i = 1,2,...,k such that

y*(K) = _ _i 8gi(y(K))

i=i 8y

(5.7)

which we require here.

L (y(k), u(k))

Let us therefore specify

k-1

= _ lu(k) I
k=O

corresponding to Equation (4. 19) with T = 1, and

f (y(k), u(k)) = [A-I] y(k) + B u(k) (5.9)

corresponding to Equation (4. 15). In addition, our target set S

reduces to a point, that is, k in item 2(C) above, equals m.

The necessary conditions given by the theorem above are

dependent on (i) various important properties of the functions f and

L of Equations (5.8 and 5.9), and (2) on the rationale used in their

derivation.

With respect to the latter, the usual derivation of the maxi-

mum principle begins with postulating an optimal trajectory x*(t) or

(5.8)

This statement of the maximum principle is more general than that
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{y*(k)}. The control u""(t) or {u*(k)} is then perturbed, and the

effect on the trajectory is expressed by the so called "Variational

Equations. " From these, and from knowledge of the properties of

the target set S, or the set of reachable states _(T) or g2(K) (e.g.,

compactness, convexity), the necessary conditions are derived.

Jordan and Polak 30 point out a conceptual difficulty which arises

when this rationale is applied in the discrete time case. Recall that

in the continuous time case, it is possible to choose 5 u(t) _perturba

u*(t)) - which range in magnitude over the entire allowabletions to

control set and nevertheless affect the trajectory x*(t) only slightly.

Because of this second order effects are kept negligible. Concept-

ually, this can be done by allowing the perturbation pulse width to

become smaller and smaller as the magnitude of 5 u(t) grows. This

permits one to search out all of the control space for global maxima.

In the discrete time case, however, the pulse width of the control

function is always relatively large, and frequently fixed. Hence any

large perturbation in the magnitude of the control sequence {u*(k)}

has a large, possibly "nonlinear, " effect on the optimal trajectory

{x*(k)}. Therefore, only small changes of magnitude in the control

are permitted - with the result that only local conditions can be dis -

covered. This observation reduces to the fact that, in arriving at a

"maximum principle" for discrete time systems (even those which

are linear), the analysis must consider second order terms. These

terms determine the nature of stationary points of the function H.

By considering their behaviour we can deduce a "Maximum Principle"

from what otherwise would be a weaker "Stationarity Principle. " The

reader is referred to Jackson and Horn 31 for details on how to pro-

ceed with the necessary "second order" analysis.

One can avoid the above described difficulties in the derivation

rationale by initially assuming certain properties for the functions f
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and L. These properties can be chosen to insure that the so called

"second order" effects discussed above are negligible. Kleinman

and Athans 29 describe Holtzrnan' s "directional convexity" assump-

tion. This assumption is stated as follows:

Directional Convexity Assumption: Assume that for

all pairs of allowable controls u and v, and for all

real numbers _ E[0, i], there exists a vector W

within the set of allowable controls and a scalar

/3> 0 such that for all k = 0,1,...,(K-l), the

(m+l) dimensional column vector

satisfies the relation

Y(y(k), W )=_Y(y(k), v(k))+(1-_) Y(y(k), u(k))+_z

where z is the (re+l) column vector [0,0,...0, i]T.

The directional convexity property protects the "discrete time"

model from allowing a state change to take place at point k which

reduces the value of the functional L. This danger can arise when

a physical system is modeled directly as a discrete time process.

However, ifthe discrete time model is derived from a continuous

time model of a physical situation which can be solved by the Maxi-

mum Principle, the directional convexity assumption holds auto-

matically. 29 It is the directional convexity assumption which permits

us to convert a weaker "Stationarity Principle" into a "Maximum

Principle" for discrete time systems. Directional convexity is

required for the theorem stated at the beginning of this section to
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hold true. In particular, it allows us to use the term "absolute

maximum" in necessary condition 2(A).

Fortunately, directional convexity holds for systems of the

type we shall consider. More generally, systems for which

(a) Each f (y(k), u(k)) is linear in u(k) for all

k = 0, i, ...,(K - i), and

(b) The set of allowable controls and the last function are

convex in u(k) for all k = 0,1,...,(K - i),

29
have this property.

The foregoing discussion outlined some of the recently

developed eoneepts concerning the Discrete Maximum Principle.

Its purpose was to set the stage for a numerical example in whieh

the optimal fuel control sequence will be computed by Linear Pro-

gramming and compared with a solution obtainable by use of the

Maximum Principle.

Consider the system

Y2(k+l) 1 / Y2(k)

u(k)
(5. lo)

Ooj [:]A = 0 0.5 B=

For K = 8 and

7

and P(K)= Z
k=0

be stated as

y(0) = [111.1, 100.0] T, we desire y(K) = [0,0] T

Iu(k) I to be minimized. The adjoint equation may

(5. 11)
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and the Hamiltonian as

H(y(k), u(k), Ir(k+l)) = -lu(k)l +_r(k+l)y(k+l) (5.12)

=-lu(k) [ +_r (k+l)IA y(k)+ Bu(k)/
L J

The Maximum Principle approach calls for maximizing Equation

(5.12) over all u(k) such that lu(k) l-< M, where

control bound. Without loss of generality we set

Max H = T-['_(k) = Max

u(k)

]u(k) I <-1

7r(k+l) B u(k)

M

M=I.

- l u(k) I }

is the upper

Then

Equation (5.13) implies that the optimal control sequence {u*(k)}

must satisfy, for all k = 0,1,...,(K-l),

(5. 13)

To continue the computation under the Maximum Principle approach

we would insert Equation (5.14) into Equation (5.10) and sJ_multa-

neously solve Equation (5.10) and Equation (5.11). Since we have

split boundary conditions y(0) = [111.1, 100.0] T and y(8) = [0, 0] T

an iterative process must be used. There is the added complication

of the singularity condition when ]B' 7r (k+l) I - 1.

It is at this point where the LP computational method devel-

oped in Chapter IV can be used to advantage. Recall the fact dem-

onstrated in Chapter III that the optimal simplex multipliers (dual

variables) of Section 3.4 are the initial conditions to the adjoint

equations of the Maximum Principle Approach.

{u*(k) : 0 if Ilr(k+l) B] < 1u*(k) sgn _r(k+l)B if I_r (k+l) B I> 1 I (5.14)
u*(k) is undetermined if ]Tr (k+l) B] - 1
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The result of solving the problem at hand using the M-8

Linear Programming Code in the manner described by Section 4.4

is as follows

u(k) : 0

u(4) : - 0.77

u(5) : - 1.0

u(6) : - 1.0

u(7) = 0.46

_1(0)__ = + 0. 001949

k = 0,1,2,3

Y2(O) = - O. 046053

P(8) = 3.23

Computation Summary IV depicts these results along with the Maxi-

mum Principle computation if _1(0) and _r2(0) given by the LP

solution are used as adjoint initial conditions.

When the control variable enters linearly in the Hamiltonian,

the singularity condition (for the problem at hand, I?r(k+l)B [ -= i) may

be expected to arise. This is true for both the discrete time and

continuous time cases. In general, singular subarcs in the control

function occur when the inequality

H( "" *z--- ") <H(u_+ ---u +6u )i = 6Ul' r ru u_ u" --
r

32
is met as an equality during a non-zero (finite) interval of time.

An appropriate analysis can show that this situation implies that

8H
- 0 for a finite interval of time for some control component,8u.

1

indexed i. This situation was demonstrated in Section 3.2 and

Figure 3-2 (c) for the continuous time case.

8H
The singularity condition, - 0 occurs more frequently8u.

1

in the discrete time case. Let us portray this situation heuristically.
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0 0 0
COMPUTATION SUMMARY IV

TEST PROBLEM SECTION 5.2

(A) OPTIMAL CONTROL; LP SOLUTION; y(0) = [111.1, 100] T

u(O) u(1) u(2) u(3) u(4) u(5) u(6)

-i.0

u(7)

_ 46

u(8)

(B) TRAJECTORY USING OPTIMAL CONTROL

k u(k)

0

1 0

2 0

3 0

4 - . 776

5 -1.0

6 -1.0

7 + . 046

8 0

0

Yl (k)

+ 111.1

+ 37.03

+ 12.34

+ 4. 113

+ 1.37

• 317

1. 106

1. 368

0

Y2 (k)

+ i00.0

+ 50

+ 25

+ 12.5

+ 6.25

+ 2.35

+ .175

- .912

0

(C) DETERMINATION OF OPTIMAL CONTROL: MAX PRINCIPLE

k 7[l(k)

0 +. 00195

1 .00585

2 .01754

3 .05262

4 .15787

5 .47361

6 1.42O82

7 4. 26246

8 12. 7874

_2 (k)

0. 0460

0. 0921

0. 1842

0.36 84

0. 7368

1.4737

2. 9474

5. 8948

11. 7896

_(k)B

<1.0

<1.0

<1.0

<1.0

<1.0

-1.00

- 1. 526

- 1.632

+ 1.00

MAX PRIN.

u(k)

0

0

0

0

UNDET.

-1.0

-1.0

UNDET.

0

LIN PROG.

u(k)

0

0

0

0

- .776

-i. 00

-i. 00

+0.46

0
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Figure 5-2 depicts the polyhedron of recoverable states for the

system associated with our prior illustrative problems. The

trajectory for K = 3 and y(0) = [10, 2] T is sketched along with the

optimal value of lr""(0) computed in Section 4.3. The Hamiltonian,

E, ,lH "(0) is the dot product of the vector (1) - y(o T and rr*(0). A

pe_urbation about u*(0) = 13/15 (the optimal control value for k = 0

computed in Section 4.3) will not change this dot product. Thus
5H

5u*(0) - 0 for a finite At. This is the condition for singular control.

The Maximum Principle will fail to provide enough information to

compute the optimal control function in this instance. However, as

has been shown, the LP approach will easily determine the required

intermediate control magnitude.

5.3 Functional Analysis Approach

Referring to Equation (4.12) in Section 4. 1, let the row vector

of matrix [R] be designated

r. = (ri0 .... r. )i ril' ri2 I,K-I

i = 1,2, .... m

The r.' s form a basis for a K-dimensional space over which we willi

define a functional f. This functional, specified by the vector

u = (u 0 u l...uK_l) , is to have the property

f(r i) -- - Yi(0) i = 1, 2,...,m (5. 15)

The H61der inequality for sums (Kolmogorov and Fomin,

Reference 33, Page 20) is introduced next. Given the above men-

tioned K-vector u, and any vector r in the subspace defined by

{r i li=l, 2,...,m}, we write the HSlder inequality as
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f(r)= _ r ku k -< S IrkUkl-<
k=0 k=0 [k =0

-1

(5.16)

-1 -1
where p + q = 1; p, q>_ 1.

components of the r and u vectors.

vectors are defined as follows

-1

Ilrllq = Lk=° Irk[

Note that here the k' s

Norms for the r

index the K

and u

(5.17)

When p = 1

-1

(5.18)

K-1

Ilutll-- 2 {Ukl
k=O

which, by letting u k --=u(k), corresponds to fuel performance

defined in Section 4.2, Equation (4.19). For p = 1,

infinity, and the corresponding (conjugate) norm for

][r [[¢o = Max Irk]
k

k=0, 1, 2, ..., (K-l)

At this point, the minimum fuel control problem,

(5.19)

P(K)

q approaches

r is written,

(5.20)

to which we

can be stated in a functionaladdressed ourselves in Section 4.2,

analysis context:

"Determine the functional f over the K-dimensional

subspace generated by {rill, = 1, . . .,m} such that

f(r.)l = - Yi (0)' and further that [[u[[ 1 is a minimum. "
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Before the solution to this problem is apparent, we must develop a

relationship between f and IluIl.

To accomplish this, we choose an arbitrary m-dimensional

vector w and write the dot product

m m

i=l i=l

where _i represents the ith component of the row vector y. Since

f is a linear functional

i=l z i=l

where r. is, as before, a K-vector, the i TM row of matrix
1

we refer to Equation (5.16), and consider

R. If

m m

r = _ _.r.li or rk= _ _irik •
i=l i=l

we can rewrite the HSlder Inequality for

follows

<

r = (ro,---rk,---rK_l)

(5.23)

f(r) Equation (5. 16) as

<

K-1 m K-1 I S2 wirikUk < 2 ITiriku k
k=0 i=l k=0 i'=

[k_-i l< m k)[Jl/q[%-i p]i/p=o i_1 "iri kk=O lukl

<-I1=IqlluIp

(5.24)

The above implies

f(r)
>fluIip-

llrllq
(5.25)
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Thus llull is minimum when equality holds for Equation (5.25) and,
P

collaterally, for the HSlder Inequality, Equation (5.16). However,

since r depends on an arbitrary 7T, equality must also hold for the

"worst case" i.e., when 7T is chosen so as to maximize f(r). Thus

we require

EHo,J:
Min 7T fir [lq

(5.26)

As in Kranc and Sarachic 22 we observe

Hence

= 1Min l[rUq

(5.27)

I ] 1 (5.28): Min -_r II- -
]IUlIP Min 7T (-y{0)) = 1 q

The same result is obtainable from another but similar viewpoint;

it appears in the literature under the title "Krein' s L Problem. ,,24

With Equation (5.28), we have a means of finding L'lU']pJ Mi n

P _

However, for the control problem, our interest lies in finding u

itself. This is possible since, for the HSlder Inequality Equation

(5.24) to be satisfied as an equality,

u(k) =u k = C _irik
i=

it is sufficient that

signum ; C a constant

(5.29)

To satisfy Equations (5.16) and (5.24) as equalities we require:

C __.

1 1

{iiTM ]ii i_=l_'i r i q q

(5.30)
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expressible as a

Recall that our minimum fuel performance figure

p norm with p = i, that is, as:

k-I

P: Ilulll-- _ lUkl
k=O

P is

(5.31)

When p = i, q approaches infinity. Then,

rlmtl ( ),,rJJq=_1"i'i =_.x_J'irik'
q k i=l

(5.32)

q approaching infinity

rik the k th component of vector r.
1

To summarize we rewrite Equations (5.28) and (5.31) as follows:

1

II II Min Min lri ri
MIN p=

-y(O) = 1 i:1 q

(5.33)

1

MinTr [MkX (__irik_]i=l

-y(O) = 1

or

1
MIN P = (5.34)

k i=l i rik

where

(5.33).

one of finding the _"

IIm IIi___l_i ri =
q

7r" is the 7r which minimizes the denominator of Equation

The problem of finding the minimum fuel cost is therefore

which minimizes,

subject to

(5.35)
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In some cases (e. g., when q = 2 p = 2), this minimization can be

accomplished by calculus. In the ease q approaches infinity, con-

siderable ingenuity and insight must be brought to bear even in the

simplest (e.g., m = 2, second order) case.

We shall resort to Linear Programming to provide a compu-

tational method for the high order "q -_ infinity, p = i" case. Con-

sider the problem posed by Equation (5.35) and assume we have

found 7[*. Note that rik in Equation (5.35) is the ik th element of

matrix [R] of Equation (4.12).

that we find the maximum over

m

function 2 lT[*irik I= 7* r(k)
i=l

vector of

Equation (5.35) therefore requires

k (the column index of [R]) of the

where r(k) is the

[R]. From tableau (4.23) of Section 4.2,

there are 2K constraints

-7", r(k) < 11/
+ 7 r(k) <-

Furtherto the dual problem.

variable if

17" r(k) l

k th column

we observe that

171*or r(k) I< 1 (5.36)

u(k), k c {0, 1, .... (K-l)}, is a basic

This is precisely what Equation (5.35) asks us to do, i.e., find the

optimum basic variables. In linear programming terms we can find

these basic variables by using 7" to "price out" (see Dantzig

Reference 6, Chapter IX) each column of the matrix [R]. In the

functional analysis approach we do likewise after determining

to _*(- y(0)_ = I. Hence the y* found under LP and thesubject
]

functional analysis methods differ only by a constant factor equal to

PMin = DMa x, P and D are as defined in Section 4.2.

= 1.0 = Max 17r(k)l" "' (5. 37)
k
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To clarify the notational complexities which may have arisen

in our comparison of the functional analysis and LP computations,

consider the following two-state variable plant where the single

control affeets both states simultaneously:

y(k+l) = A y(k) + B u(k)

_ E°:_o,°_oIB:[:] _,_,

This is the same familiar system we have used before. The system

is stable and, without eontrol, approaehes the final state y(K) = 0

asymptotically. Our problem is to find the minimum fuel control

which will bring the plant to this equilibrium state exaetly in a time

interval KT, T = i. Let K = 3. From Chapter IV we can write

_i0 ]_ i_l- y(O) = _ .333 0 u(j)
j=o o 0.5

or for K = 3

:II Ju,o,+[°,l (5.39)

We require P to be minimum where

2

_: E lu(j)l
j=O

Linear Programming Computation:

The linear programming solution is depicted in Computation

Summary I of Chapter IV. Both primal and dual problems are

solved in one computational pass of the "by hand" simplex method.
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The solution and illustrative check are as follows:

-_ -_ =

_ = + 13/15, u I = O, u 2 - 7/15Primal: u0

Dual: 7[i = - I/3 and _2 = 1

Primal Cost: P = 13/15 + 0 + 7/15 = 4/3

Dual Cost: D = _r1 (- Yl(0)) +_2 (-Y2 (0))

= - 1/3 (- 10) + 1 (- 2) = 4/3

Optimality Check: P = D = 4/3

Functional Analysis Computation:

As outlined above,

the following computation:

.It(-\ y(O)'_/ = ZrI (- 10) +Tr 2 (- 2)

the functional analysis approach requires

2

r = _ 7fir'1 = 7rl (3, 9, 27) + lr 2 (2, 4, 8)
i=l

(5.40)

Ilrll = 7[iri = Max [=i
oo i= oo j i=l rij

j=0, 1, 2

or

[[r]oo =Max [[37r1+27r2[, [91rl+4_r2[ , [277rl+87r2[ I (5.41)

next, we must determine _ where

I[':_=17[ [ MinTr Max I[37rl+2_r2[' [97rl+41r2[' 1277rl+gTr2_]

- y(O) = 1 (5.42)

Kranc and Sarachik 22 refer to Chebychev approximation theory to
25

solve this problem but they do not develop a method. Swiger
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points out the fact that the calculus can be employed if the absolute

value sign could be removed. This may be done when p or q is

an even integer. For the case at hand, however, p = 1 and q =_,

thus, the calculus approach is not possible. A Chebyehev approxi-

mation method could be developed or, in the two state ease, we can

determine _" by some judicious choice and application of ingenuity.

Fortunately, the linear program solution can be applied easily and

advantageously.

Consider the dual cost computed in Section 4.3

'_(_,00+_y(_,0_)D=Y 1

D __

LP
where 7r

1

formulation.

1 4
- _-(- 10) + 1 (-2) =

(5.43)

LP
7r2 are the dual variables of the linear programming

If we set

w

LP LP

7rl _2

1 - D '_2 D

we can satisfy the constraint

_,_(-_o_)_(-y,oO___y =i

Using this substitution

• - 1/3 , + 1
_1 - 4/3 - 1/4, _2 = 4_ = +3/4

Thus

Max y" r i
J i=l i

: Maxl]- 3/4 +6/4[,
L

l-9/4 + i2/41,

= 3/4

l- 27/9 + 24141]

(5.44)

(5.45)
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Note that, in this ease, the solution is not unique. We could have

determined this from the LP solution also. Continuing

=[,,u,,1]1-- (5.46)

j =i rij

whence

P = 4/3

This checks with the LP solution obtained by the simplex method.

To compute the u':'(k), k = 0, 1, 2, we turn to Equations

(5.29 and 5.30). Let

lil m

I S% I =Max ] _Tririkl
i=l rij k i=l

(5.47)

Then we may write Equations (5.29 and 5.30) as

u(j) :

ImIi=_1 i rij signum _i rij

q
(5.48)

m

+q _1

(=0

:_j

+

As q approaches infinity Equation (5.48) reduces to

k.

u(j) :___i___ for j : {J}
m

_ 7T.r..

i=l 1 z3 (5.49)

u(j) : 0 for j ;e {J}

where {J} is the set of all column indices for which Equation

(5.47) holds. The set {J} allows for the case when Equation (5.47)
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m

produces more than one [ _ _irik I which has the same value as

i=l

the maximum. Another requirement for the multiple maxima

situation is

k.=l
J

j {J}
(5.50)

Applying this analysis to our numerical example, we note

that Equation (5.45) produces three j' s all with the same maximum.

Hence {J} = {0, 1,2}. As a result,

k 0 k 1 k 2

Uo - 3/4 ' Ul - 3/4 ' u2 = 3/4

To determine the k.' s solve the following equation set
J

- 10(3/4) = 3ko+9k 1 - 27 k 2

- 2(3/4)= 2ko+4k 1 - 8k 2

1 = k0+ kl+ k 2

We obtain k 0 = 13/20, k I = 0 (arbitrary) and k2= 7/20. This

yields

u 0 = + 13/15 and u 2 = - 7/15

which again corresponds to the LP solutions of Section 4.3.

5.4 Generalized Programming Approach

This section illustrates the generalized programming

method for the discrete time case. Here, the set of recoverable

states [2 is a convex polyhedron and the solution can always be

obtained in a finite number of iterations. This contrasts to the

continuous time case in which the solutions obtained at each step
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of the generalized algorithm, merely approach the optimal

monotonically.

Consider the following problem.

used in prior illustrations.

y(k+l) = A y(k) +B u(k)

10:00150

Given the same system as

(5.5i)

The initial state y(0) is to be nulled in three time periods with the

2

Z lu(J)[ is to be minimized. Analogousrequirement that Z

j:0
to the definitions of Sections 2.4 and 3.4 we define

p ._.

u

K-I

S A-I-J Bu(j)

Jl 0 .......

K-1

S lu_j_;
j=O

[_io]Q : _:A_. u :

0

(5.52)

The minimum fuel problem can now be restated as:

"Minimize z such that zU+P =Q (5.53)

As in Section 2.1 we take Em+ 1 to represent the extended require-

ments space containing, in this instance, the convex set (a poly-

hedron) of recoverable states, _2(K). This is depicted in Figure

5-3. We shall call the line, which contains the requirement vector

- y(0}, and which is parallel to the cost coordinate, the Requirement

Line.
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_(K)

SIMPLEX

p4

- y (0)

Y2

THE CONVEX POLYHEDRON

CONTAINING A SIMPLEX

FIGURE 5-3

f_
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Assume that we select four allowable control functions

uJ(i), i = 0,1,2,...,(K-I); j = 1,2,3,4. Using Equation (5.52)

these generate the four column vectors p3, j = i, 2, 3,4 represented

in Figure 5-3. Their convex hull, a tetrahedron in f2, is also

shown. The initial I_' s may have all been extreme points of f2 .

In Figure 5-3 only p4 was assumed to be so.

In the ordinary simplex method we are given n PJ' s at the

start of the problem. For an m-dimensional requirement vector,

m + 1 of the n PJ' s define a hyperplane in Era+ I. This hyper-

plane contains a point of the requirement line if the PJ' s are

chosen so as to produce an initial feasible solution. If we generate

one more PJ in addition to those defining the given hyperplane, we

may form a simplex in Em+ I. For m + 1 = 3 the simplex is a

tetrahedron shown in Figure 5-3. The simplex method operates to

examine each plane in this simplex to discover which possesses the

lowest point on the R__equirement Line. The simplex method also

determines which I_ to eliminate and which to add. We thus form

a new simplex wherewith we can repeat the process. Simplex rules

determine when the optimum solution is obtained. For a detailed

description of this "simplex interpretation of the simplex method"

the reader is referred to Dantzig (Reference 6, Chapter VII).

In the generalized programming method, we may begin the

problem with only (m + i) I=j's. Additional PJ' s, unknown at first,

are generated at some time later in the algorithm. Although the

problem at hand may be more efficiently solved by the ordinary

simplex method, it is instructive to solve it also by generalized

programming.

We proceed by writing the vector P of Equation (5.52) as

a convex combination of m + 1 linearly independent vectors I=j
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m+l m+l

P = _ X.I::'J ; _ X. = 1 ;X. -> 0

j:_ J j:l J J
(5.54)

Each P j is generated by an allowable control uJ(i), i=0, i, 2, . .., K-I

The control which produces the vector P is thus

m+l m+l

u(i) = _ kj uJ(i) ; _ k. = 1" k.>- 0
j=l j=l J ' J

(5.55)

The state diagram of Figure 5-4 may be used to ease the

selection of the first three PJ' s in order to create a satisfactory

initial solution. It is clear that - y(0) should lie in the convex

hull of the PJ' s so selected. The points _, _, and _) of

Figure 5-4 will serve our purpose. Their relevant properties are

given in the following chart.

Point Number Control Funetion PJ

u I= (1,0,0)

u 2= (-1, -1, 0)

u 3= (1, 1, -1)

[3,2, li T

[ -12, -6, 2 ]T

[ -15, -2, 3] T

©

© (5.56)

Since zU +P = Q and for j = 1,2,3,

3 3

P= _X. PJ" _lkj:, 1 ', >,.. >- 1
j=l J j= 3

(5.57)

we may express the Master Problem in the following version of a

"Tucker" diagram previously described in Sections 2.3 and 2.4.
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(-v)

7r1

_r2

_3

X 1 X2 X 3

1 i 1 0

3 - 12 - 21 0

2 - 6 - 2 0

1 2 3 -I

0 0 0 1

e I e 2 e 3 e 4

i 0 0 0

0 1 0 0

0 0 1 0

0 0 0 I

0 0 0 I

1

- I0

- 2

0

(5.58)

This First Master Problem is solved in Computation Summary V to

obtain the initial values of k = (XI, X2,k3, z) and_=(-vY2 _3 _4 )"

A pivot reduction routine similar to the one performed in Compu-

tation Summary I, Chapter IV, yields both X and _.

To see how the dual variable _ is determined, apply Equa-

tion (4.31) to the problem represented in Tableau (5.58) above. We

may write the dual of this Master Problem as

1 i I 0

0

0

-i

= (o, o, o .... o, 1)(- v, yl ..... _'m+l )

Pij

Designating the matrix in Equation (5.58) as [B],
-I

plying both sides by [B] we determine that

( - v, _1 ...... _m+l )

where the b(m+l),

last row of the matrix

four rows.

(5.59)

and postmulti-

--_(m+l), 1 ...... _(m+l), (m+l))

(5.60)

\

= 1, 2,..., (m+l)} are the elements in the
-1 /

[B] For the problem at handthere are
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0 0
F---- COMPUTATION SUMMARY V

GENERALIZED PROGRAMMING EXAMPLE: SECTION 5.4

(A) FIRST MASTER PROBLEM:

k I k 2

e I Q 1

e 2 3 - 12

e 3 2 6

e4 1 2

k I 1 1

e 2 0 G

e 3 0 - 8

e4 0 1

21 1 0

X2 0 1

e 3 0 0

e 4 0 0

A 1 1 0

k 2 0 1

A 3 0 0

z 0 0

X 3 - X 4

1 1

- 15 - 27

- 2 8

3 1

1 1

- 18 - 30

4 - i0

2 0

-i/5 - I

6/5 2

4/5 2

0

0

1

0

-li/i4

5/7

15/14

20/7

(B) SECOND MASTER PROBLEM:

IX1 )"2

Ai 1 0

)'2 0 1

0 0

0 0

;t__i4_ 1 ii/i0

k 4 0 7/5

o -3/2

0 -4

k 3 -- k 4

0 - 11/14

o ®
i 15/14

o 20/7

0 0

0 1

1 0

0 0

z e I e 2 e 3

0 1 0

0 0 1

0 0 0

-i 0 0

0 1 0

0 -3 1 0

0 -2 0 i

-I -1 0 0

o 4/5 1/i5 o

0 i/5 - 1/15 0

0 - 2/5 - 8/15 1

- i - 6/5 1/15 0

0 i1/14 1/21 1/28

0 2/7 1/21 - 3/14

0 - 1/14 -2/21 5/28

1 8/7 - 1/7 1/7

- v "'1 z'2

,,z

0

0

0

1

0

0

0

1

e 1

Iii14

2/7

- i/14

8/7

ii/i0

2/5

-I/2

0

-v

• 2 e 3

1/21 1/28

1/21 - 3/14

- 2/21 5/28

- 1/7 i/7

iii0 - i/5

1/15 - 3/i0

- 1/6 1/2

- 1/3 1

,

e4

0

0 0

1 0

0 1

0 0

0

0

1

0

0

0

I

0

0

0

-i

_3

e 4

0

0

0

-I

0

0

0

-i

7 3

END COMPUTATION SUMMARY V

0 <>

Q

1

- I0

- 2

0

1

-13

- 4

1

2/15

13/15

44/15

- 28/15

5/21

5121

11/21

16/7

Q

5/2i

5/21

11/21

16/7

1/2

1/3

Z/6

4/3
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By referring to Computation Summary V we determine the First

Master Problem solution as

,, )= ' 7' 7' -i

5 5 ii 16 )_Y' 2-Y' 2-Y' 7

(5.61)

To continue our numerical procedure, note that

p J=
2 . .

A-I-I B uJ(i)

i=0

2

S ]uJ(i)1

i=O

(j = i, 2, 3) (5.62)

where

the method of Sections 2.4 and 3.4, we are to maximize over

A and B are defined as in Equation (5.51). According to

u(i)

I 2P = (_I _2) A -l-i B u(i - _ lu(i)I (5.63)
=0 i=O

the function

The function _P in this case is separable, -the sum of three in-

dependent functions. Therefore it is sufficient to maximize each

subfunction individually, that is find S. where
i

I u(i) 2 B u(i - lu(i)I
(5.64)

for i = 0, I, 2. The above expression is to be considered a Sub-

Problem which will generate another column for the Master Problem.

Its correspondence with Equation (5. 13) derived by the Maximum

Principle should be noted. Equation (5. 13) and Equation (5.64) are

equivalent.
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Continuing with the Generalized Programming procedure we

compute Equation (5.64) for each i as follows

i:0 : maximize (37[1 +27[ 2) u(0) - lu(0) I

i-- 1 : maximize (97rI + 47[2) u(1) - lu(1) l

i--2 : maximize (277[1 +8712) u(2) - lu(2)I

(5.65)

resulting in

i=0 :MAX { -0.14u(0)- lu(0)]}= 0

i= i :MAX {-0.71u(l>-lu(1)]}--0

i= 2 : MAX {- 2.72 u(2) - Iu(2) l} = 1.72

for u(0) = 0

for u(1) = 0

for u(2) = -1

Note that, as in Equation (5.13), the restriction [u(i) I < 1

used to avoid infinite magnitude impulses.

(5.66)

must be

The solution to the Subproblem (5.64) calls for a new column

to be added to the master program, that is, referring to table (5. 56)

P

Point Number [I Control Function j

II4
_) u =(0,0, -1) [ - 27, -8, 1]

This column p4 is generated from Equations (5.66) by the control

u(0) = 0, u(1) = 0, u(2) = - 1. The simplex method is used again

to solve the Second Master Problem with the new column included,

and an old one dropped. We can simplify the arithmetic by refer-

ring to the state diagram in Figure 5-4. Since k. >= 0 for all j, we
J

drop that column which preserves this property and has the highest

cost component, p3 has the highest cost component but dropping

it will cause the master solution to lose its non-negativity property.

Hence we drop p2 instead. This subterfuge is used only to ease

hand computation. The machine algorithm employing the simplex

method preserves non-negativity intrinsically.
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Solution of the Second Master Problem yields the following

value s:

_1 1,-1)(-v'Trl' _2' _3) = (°' 3"

)1' k4' k3' z = 2' 3" 6" 3

A second attempt to solve the Subproblem with _1 = - 3 and _2 =+ 1)

S. = Max
1

u(i)

for i = 0, 1, 2, yields all S i < 0 . Hence, no other column which

yields lower fuel cost can be added. The algorithm terminates

with the following solution.

[:]u - X 1 + X3

Hence u"(0) = 2/3, uql) = 1/6 and

2

is _ lu(i){ = 4/3.
i=0

problem with K = 3

same fuel cost (but no lower) exist.

u*(2) = - 1/2. The fuel cost

As noted before, the optimal control for this

is not unique. Other solutions yielding this

Two of these were computed

in Section 4.3.



CHAPTER VI

APPLICATION TO ON-ORBIT MIDCOURSE
AND TERMINAL CONTROL MANEUVERS

6.0 Introduction

There is a continuing need for application studies of

optimal control theory, particularly to problems of missile and

space vehicle guidance and control. Some results have been ob-

tained in this problem area (where fuel consumption, payload, and

mission time are especially critical) but much more remains to be

done.

Near earth space operations may be divided into several

mission phases as follows: launch, orbit injection, orbit transfer,

midcourse and terminal maneuvering. For present purposes, the

orbit transfer phase is considered to be one which transfers the

spacecraft between earth orbits differing widely in associated

energy -altitude differences of hundreds of nautical miles for

example. After execution of such a transfer maneuver, the space-

craft' s velocity and position at a specified time may still differ

from a desired position and velocity. In the terminal maneuver

phase, we will assume this difference to be anywhere from 1 to 10

nautical miles, and one to three hundreds of feet per second, de-

pending on a great many mission factors.

Midcourse and terminal maneuvers are consequently

required to

(a) Bring the spacecraft to a pre-specified position,

velocity and time state so that its subsequent free-fall trajectory

follows a desired ephemeris.

120
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(b) Match the position and velocity of another orbiting

spacecraft in order to achieve a rendezvous or station-keeping
condition.

Terminal maneuvers are also needed to maintain a desired

ephemeris in the face of conservative and non-conservative per-

turbation forces.

This chapter is intended to demonstrate how the Linear

Programming formulation of the "Minimum Fuel" problem can be

applied to program the required thrust acceleration for terminal

and midcourse manuevers of the type outlined in the previous para-

graph. Pertinent features of this application include the following:

(a) Thrust is assumed to be obtained by fixed thrusters

mounted orthogonally.

(b) Discrete time linearized equations of motion (of the

Wiltshire-Clohessey type, Reference 34) are employed.

(c) A target centered coordinate system is postulated. In

this system the linearized equations for the applicable relative

distances are sufficiently accurate. For example, at x = y = 50 NM,

the nonlinear terms amount to an accelerating force of approxi-

mately 0.01 ft/sec 2 in the x and y directions. 35

(d) Fuel usage for discrete time control functions are

minimized.

(e) Initial and target orbits may be circular or elliptical,

and may involve plane changes within allowable thrust acceleration,

maneuver time, and linearization ranges.

(f) The state determination (navigation) system is assumed

to be sufficiently precise to make plausible a fuel minimization

problem which is a deterministic.
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6. 1 Equations of Relative Motion

Let R be the position vector of a controlled satellite,
_S

and R T be the position vector of either a "target" satellite, or a

desired terminal position vector. These vectors are depicted in

Figure 6-1, along with the coordinate system representation needed

in what follows. Equations of motion may be written:

_T -P --RT + -PT +: 3 FT (6.1)
R T

_s -_' RS + Ps +-- 3 FS (8.2)
R S

where PT ' PS are perturbation forces on the target satellite, and

the controlled satellite respectively. F T and _Fs are thrust ac-

celerations. Note that _FT and -PT may be set to zero if R T is

to represent a desired position, vector only.

Let r be the vector difference between the position vector

of the controlled satellite and the desired position vector. Thus,

r = R S - R T (6.3)

Using Equations (6. 1), (6.2), and (6.3), the following expression

may be written

(6.4)

Equation (6.4) may be written as
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- 3

R T

r

Ii+(2r ° RT)/R 2+ (r/RT )21312

+

2 + " 2 _3/2__-[,+(_r.___)_(r_)J _
2 )/R2 +(r/RT)213/2

}
Next apply the algebraic expansion,

-3/2 3 3.5 2
(l+a) = 1 -_- a+2-- _- a ....

to the denominators of the bracketed terms in Equation (6.5) to

obtain

Ii+ (2 r" RT)/R2+ (r/RT)21

-3/2

= 1 - _ 2r • R /R + r/R T + ''"
(6. 6)

The bracketed term in Equation (6.5) may then be written as

0 0

0

+ _--_ "-_(-_'-_)_4 _ +"
Dropping all terms with factors of magnitude (r/RT) < < 1, we

obtain the following approximation to Equation (6.4) and (6.5).
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i_ 1-3 - 2

R T R T
(6.7)

For r small compared to R T or RS, (-PS--PT)maybe assumed

negligible. Furthermore, if no thrust is applied to the "target"

satellite, _FT= 0.

The state equations for the rendezvous control or orbit cor-

rection process will be based on the target centered rotating co-

ordinate system depicted in Figure 6-i. Orbital rotation rate is

w. Unit vector e is parallel to w, e is along RT at all-- -z -- -y

times and e is oriented to construct a right-handed orthogonal
--X

coordinate set. This relative coordinate system is target centered

and rotates about e in inertial space at the target orbital rate w.
m Z

Equations of motion and state in this coordinate system are

obtained as follows:

w = w_j e
_ Z

r = xe +ye + ze
- -x y -z

f_ = (i - wy) e +(:_ +wx) e +(_)e
- -x -y -z

i_ = (i - 2 w_ -_vy -w2x) e
-- m x

+(_ + 2w±+_ry-w2y) e +(_)e
my -z

RT= RTey

_r,,RT= yR T

(6.8)

Using these expressions in Equation (6.7) the following relations

result :
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2 -p
-2w_ -gry -w x=_

3

R T

2 + 2p
_+2w_+,h 7 -w y- 3

R T

x+F
X

y+F
Y

(6.9)

_= -/.t z+F
3 z

R T

Two of the three second order differential equations in Equations

(6.9) are coupled. In general they are time varying. Note that

the expression (F s- F T) has been decomposed into its three com-

ponents F x, F and F These represent three orthogonaly z
thrusts per unit mass which are to be used to reduce the x, y, z,

_, _, _. to zero from some arbitrary initial condition.

When the target orbit is circular, w and R T
2 3

Further, w = p/R T so that

are constant.

--F
X

j; + 2w_ 3w2y = F
Y

2
B+w z =F

z

(6. 10)

These are the rendezvous equations frequently attributed to

Clohessy and Wiltshire.34

6.2 Differential Equations of State

Consider the first two equations of Equation (6. i0). These

can be used to represent in-plane maneuvers independent of the

third out-of-plane equation in z. Set x = x I, _i = x 2, Y = x 3,

_3 = x4, Fx = u I and Fx = u2 to obtain:
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x 1

x2

x3

.x4.

-0

0

= 0

0

1 0 ,0
I

0 0 '2v
]

]

0 0 .i
]

-2w_+3w2,0
! i

x 1

x 2

x 3

x 4

In like manner, for the equation in

u3= F to obtain:z

0

1

+ 0

0

D

Z,

0

0

1

set
z = x5, _5 = x 6 and

m_la_ 0 _ x 5 IO

= 2 + u 3

The in-plane equations, Equations (9) are in the form,

= Fx + Bu

(6.11)

(6. 12)

where F and B are constant matrices. The characteristic

matrix is obtained by the Laplace Transform method as follows:

-1
where L denotes the inverse Laplace Transform operation and

I is the identity matrix.

[Is - F]
-i

1

s

2s - 3w 2

s2(s2+w2 )

s2 _ 3w 2

s(s 2 + w 2)

2w
0

s(s 2 + w 2)

2w

O,-s2 +w 2

For reference purposes we record,
m

6w 3 2w

s(s 2 + w 2)s2(s 2 + w 2)

6w 3

2
s(s +w 2)

2s + 4w 2

s(s 2 + w 2)

3w 2

s 2 +w 2

2w

2 2
S +W

2 2

S +Ws Is2 2+w

(6. 13)
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from which we obtain:

¢(t) =

6wt 6 sin wt 2 2- cos wt
W W

6w - 6w cos wt 2 sin wt

4
-- sin wt - (3t)
W

4 cos wt - (3)

2 (2)-- cos wt -
W

4 -3 cos wt
1
- sin wt
W

0 - 2 sin wt 3w sinwt cos wt

(6. 14)

6. 3 Difference Equations of Motion

With the derivations contained in Section 4.1 difference

equations may be formulated from Equations (6. ll and 6.14). For

the application at hand

y(k+l) = A y(k) + B u(k) (6. 15)

where

A = _(T) =

B _

4 2 2
1 - sin wT- (3T) 6wT - 6 sin wt cos wT

W w W

0

0

p

4

W

4

w

2

W

2

i W

4 cos wT- 3

2 2
-- cos wT- --
w w

6w - 6w cos wt

4 - 3wT

2 sin wT

1
--sin wT
w

- 2 sin wT 3w sin wT cos wT

+
(3T 2

cos wT - \_)

sinwT - (_-_)

4
W

2T 2

w 2
W

sin wT

6. 16)

1

W W

1
- sin wT
W

(6. 17)
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u(k) = lUl(k), u2(k) 1

The computer results to follow are based on a target state

corresponding to a 300 NM circular orbit• The sampling interval is

chosen to be T = 20 secs• With these parameters wT =

and

A __

B ._

M

i• 000 ,

I
0.

I

0. I -

I

9.
b

199. 969 ,

19. 994

- 2. 923

- 0. 438

19. 994

0.999

0. 438

0. 044

2.92_

; 0. 438

, 199. 992

I

19. 998
u

, 0.000 , 0.43{

| I

0. 000 0. 044
I I

' 1.000 ' 19. 998
I I

O. 000 i. 000

Various initial conditions y(0) = hYl(0), Y2(0), Y3(0), Y4(0 T

E 1+to be nulled so that y(K) = 0, 0, 0, 0, where

• 022 radians

(6.18)

(6.19)

are

Yl(0) = relative displacement in the instantaneous

tangential direction (x I Figure 6-I)

Y2(0) = relative tangential velocity component (_i)

Y3(0) =

Y4(0) =

relative displacement in the radial direction

(x 3 Figure 6-i)

relative radial velocity component (i3)

From Section 4. i we obtain

K-I

- y(0) = >_
&....J

j=0
A-I-J B u(j) (6.20)

Let
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R(j) =A-I-j B (6.21)

so that

R(j + 1) = A-1 R(j) (6.22)

The Linear Programming Problem (Primal) then becomes:

(a) Find u(k)=lUl(k), u2(k)IT

(b) Subject to

(c)

K-I

- y(0) =

j=0

To Minimize

R(j) u(j) , I(;)l<U =M

K-1 K-1

2 Iiu(k)II: T, lu (k>I+ ]u2(k)]
k=0 k=0

The results of using the LP/90 operating system for Linear Pro-
36

gramming are reported in the following section.

6.4 Computational Results

Figure 6-2 depicts a typical trajectory with relatively high

initial relative velocity. The optimal acceleration time history was

computed for a 400 second rendezvous time with sample time taken

as 20 seconds. If the sample time were reduced, the pulses shown

would be narrower but of higher amplitude. In the limit, the theo-

retical optimum impulse control history would result. A similar

control history is also obtainable by the so called "orbital mechanics"

approach to rendezvous analysis. Total AV required for this tra-

jectory is computed as (20 secs.) times (29.9 + II. 5 + 37.4 + 3.9)

ft/sec 2 or 1654 ft/sec. This represents a substantial AV expenditure

for the type of terminal homing or station keeping application defined

in Section 6.0.
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FEET _ Ys(k)

-60,000 - 40,000 - 20,000 i k = 20
I I I -,..-

_0/0" y=(k)

_,.,To_.._..T,v_v_.oc,_Y1 k-,5/ °f°f
._,c_=_5oo_.c5ool I -j:o

.E.oEzvous,N 400sEcs/ 0/

°/°/

• ___,o// i _20_000

/
o/ -

/
29.9

o
k=5/ u,lk)

,/

_fo/ Ol2 5 I0

I I I 13141 I I I 1 I I I
k , , , _ , i i i r i i i I

37,4

2o
k=Ok= I uzlk)

V(O)REL '_T/m

_2

-11,5

k_V
I I I list I =19=2(_
I I I I I I I I I

T/m

- -- 40,000

TYPICAL TRAJECTORY -- HIGH RELATIVE VELOCITY

FIGURE 6-2
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More realistic initial relative velocities are used for the

sample trajectories of Figures 6-3 and 6-4. As rendezvous time

is increased, better AV performance is achieved. This results

from the fact that longer allowed time for rendezvous allows the

"pursuer" satellite to wait for more favorable geometry before

applying acceleration pulses. Also shown on Figures 6-4 and 6-5

are the relative motion of the "pursuer" spacecraft as seen from the

target position for the given initial conditions with no applied control.

The cycloidal motion is typical for initial relative velocities which

have a Yl directional component. If Yl(0) = Y2(0) were zero, the

idealized trajectory would be an ellipse.

Figure 6-5 is included to indicate how performance index

changes with allowed rendezvous time and initial relative velocity.

It also serves to tabulate the series of trajectories successfully

computed in the "unbounded" control case.

Bounded control computations were also made. These are

graphed in Figure 0 -7 along with the unbounded control histories.

The characteristic bang-coast-bang nature of minimum fuel control

is evident. As pointed out in Section 4.4, there is always an inter-

mediate control pulse height at either end of the coast phase. This

is characteristic of the discrete time solution. There is some rea-

son to believe that, if this region of time were filled in With more

LP "activity vectors, " we could find the optimum switching time

corresponding to the continuous time solution. This could be

approached in the manner of Sakawa and Hayashi 5 who solved a

minimum time problem using L.P. In the near future, Linear

Programming codes will no doubt be available which Will allow on-

line insertion of such new "actvity" columns.
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W
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+
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Q.

20 --

I0 --

(k)
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CHANGE OF PERFORMANCE INDEX WITH RELATIVE
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FIGURE 6-5
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Figure 6-6 portrays the nature of the trajectories resulting

from controls listed in Figure 6-7 and Computation Summary VI.

Only the unbounded control trajectories were plotted in Figure 6-6.

The bounded control trajectories are very similar, but with some of

the corners of the plotted results more rounded.

To assist in any future comparisons between the LP solutions

and those obtained by the maximum principle, the dual solutions of

runs (_) through _) are listed in Computation Summary VIII.

These may be used as initial conditions on the adjoint equations in

the manner demonstrated in Section 5.2.
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(Continued)
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------0 0

COMPUTATION SUMMARY VI

RESULTS OF CONTROL COMPUTATIONS:

RENDEZVOUS TIME 400 SECS

[Y2_4(0) l = [ - 300, - 300]ft/sec

RUN NO.

k _

(1) Ul(k)

u2(_J

(2)Ul(k)

u2(_

(3) ul(k)

u2(_J

RUN NO.

k-_

Ul(k)

u2(k)

u1(k)

u2(k)

u1(k)

u2(k)

RUN NO.

O

®

[Yl(O), Y3(O)l = [- 60, 000, - 60, OOOl n.

1 19

19.50 - o. o

27.29 - o. o

2 3

0.0 0.0

0.0 0.0

19.72 0.0 0.0

20.00 7.74 0.0

10.00 10.0O 0.79

10.00 10.00 8.68

[Yl(O) , Y3(O)] = [0.0,

1 2

12.11 O. 0

24.14 0.0

12.19 0. O

20.00 4.39

10.0O 2.64

i0. O0 I0. O0

3

0.0

O.0

0.0

0.0

0.0

5.27

[Yl(O) , Y3(O)] = [60,000 ,

2

0. O 0.0

20.11 0.0

O.0 O.0

20.0 0.12

0.0 0.0

1O. O 10.0

k_ 1

0. O

0.0

0.0

0. O

0. O

0.79

Ul(_

u2(kJ

u1(kJ

u2(_J

u1(_J

u2(_J

-- 0.0

-- 0.0

-60,000] R.

-2.37

0.0

- 60, 000] ft.

9 10

3.91 4. 51

0.0 0.0

3.56 4.47

0. O O.0

8.15 0.27

0.0 0.0

20 COST (4)

-11.14 61.81584

- 3.82

-11.29 62.92885

- 4.18

-I0.00 66.73568

- 4.90

20 COST

3.68 46.90393

- 6.98

- 3.77 47.53778

- 7.18

- 4.21 49.99312

- 7. 87

20 COST

0.0 37.79935

- 9.26

0.0 37.81221

- 9.27

O.0 39.02481

- 9.80
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COMPUTATION SUMMARY VI (Continued)

RUN NO. _) [Yl(0), Y8(0)l = [60,000, 0.0 ft.

k _ 1 2 9 10

0.0 0.0 3.15 11.85

10.55 0.0 0.0 0.0

0.0 0.0 3. 15 11.85

10.55 0.0 0.0 0.0

0.0 0.0 4.18 10.0

10.0 0.59 0.0 0.0

[Yl(0) , Y3(0)] = [60, 000, 60, 000] ft.

Uz(k)

u2(k)

uz(_

u2C_a

uz(_

u2(k_

RUN NO. ®

k_ 1 5 6

u100 o. o

u2(_ 1.98

u1(k) o. o

u2(k) i. 96

Ul(k) o. o

u2(k) 2.05

0.0

0.0

0.0

0.0

5.13

0.0

15.50

0.0

15.50

0.0

10.0

0.0

m

11

0.0

0.0

0.0

0.0

0.82

0.0

m

20 COST

0.0 27.33107

-1.78

0.0 27.33107

-i. 78

0.0 27. 39711

-i. 81

20 COST

6.08 28.23317

4.70

6.08 28.23317

4.70

6.44 28.23357

4.61

RUN NO. (_) [Yl(0), Y3(0)] -- [0. o, 60, o00] ft.

k-- 1 2 3 4

Ul(_

u1(_

u2(i0

Ul(10

u2(k)

0.0

5.38

0.0

5.38

0.0

5.38

0.0

0.0

0.0

0.0

1.57

0.0

13.11

0.0

13.11

0.0

10.0

0,0

8.47

0.0

8.47

0.0

10.0

0.0

5

0.0

0.0

0.0

0.0

O. 006

0.0

20 COST

0.0 34. 52447

7.57

0.0 34. 52447

7.57

0.0 34. 52520

7.57
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COMPUTATION SUMMARY VI (Continued)

RUN NO. (_) [Yl(0), Y3(0)] = [- 60,000, 60,0001ft.

k-_ 1 2 3

ui(k)

u2(_

ui(k)

u2(k)

ui(k)

u2(_

RUN NO.

26.41

9.54

20.00

9.40

10.00

9.00

0.0

0.0

6.75

0.0

10.00

0.0

19 -- 20

0.0 0.0 - -4.84

0.0 0.0 -- 9.77

0.0 0.0 -- -5. 18

0.0 0.0 -- 9.90

7.70 0.0 -- -6.12

0.0 0.28 -- 10.00

(_) [Yl(0), Y3(0)] = [- 60, 000, 0.01 ft.

k-* 1 2 3

ul(k) 22.99

u2(k) i8.42

Ul(D " 20. oo

u2(D i8.35

ui(k) i0.00

u2(k) i0.00

0.0

0.0

3.15

0.0

10.00

8.53

0.0

0.0

0.0

0.0

4. 07

0.0

m

M

COST

50. 56013

51.22686

53.09934

20 COST

52.36392-7.99

2.97

-8.15

3.04

-9.07

2.94

52.67456

54.61029

NOTES: (i)

(2)

(3)

(4)

Iut(k) I ITNBOUNDED

lui(k) l -< 2o.o

[ui(k)l <- io. o

COST IS MEASURED IN T/M ft/sec 2

END COMPUTATION SUMMARY VI

<> <>
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_<> <>
COMPUTATION SUMMARY VII

INITIAL CONDITIONS FOR ADSOINT EQUATIONS

RUN NO. _1(0) x 103

(_ (1) - O. 2485

i (2)
l] - O. 2566

1 (3) - O. 3039

- O. 2485

2 - O. 2566

2 - O. 2723

® - o. OlO7

3 - 0.0171

3 - O. 0243

® - o. OlO7

4 - 0. 0107

4 - 0. 0114

® - 0. 1045

5 - O. 1045

5 - O. 1045

® - o. lO64

6 - O. 1064

6 - O. 1065

(_ - O. 3535

7 - O. 3665

7 - O. 3847

® - 0. 3535

8 - O. 3665

8 - 0. 3840

_'2(0)x 103

-51.3626

-51.2738

- 58.5945

-51.3626

-51.2738

-53.9673

-40.6038

-40.0494

-39.4203

- 40.6038

-40.6038

-39.0462

-49.7313

-49.7313

-49.7362

- 49. 8932

- 49. 8932

- 49. 9179

-52.4296

- 57.7567

-63.9741

-52.4296

- 57.7567

-63.6374

113(0) X 103

- 0.2566

-0.2792

- 0.3066

- 0.2566

- 0.2792

-0.3013

- 0.1745

- 0.1924

- 0.2127

- 0.1745

- 0.1745

- 0.1919

+ 0.0747

+ 0.0747

+ 0.0747

+ 0.0742

+ 0.0742

+ 0.0743

- 0.0301

-0.0241

- 0.0104

- 0.0301

- 0.0241

-0.0264

_4(o) x 10 3

- 53.6599

- 61.5178

- 71.0030

- 53.6599

- 61.5178

- 70.3208

- 52.6374

- 58.4185

- 64.9781

- 52.6374

- 52.6374

- 58.3447

- 50.3314

- 50.3314

- 50.3315

- 50.3398

- 50.3398

- 50.3399

- 51.4024

- 51.4579

- 51.4544

- 51.4024

- 51.4579

- 54.6149

(i) ]ui(k)I UIilBOUIqDED

(2) {ui(k){<-20.0

(3) [ui(_a[-<10.0

END COMPUTATION SUMMARY VII
,,l , O



CHAPTER VII

SUMMARY AND EXTENSIONS

7.0 Summary

This investigation has resulted in defining the character of

the solution to the minimum fuel optimal control problem obtained by

means of linear programming. Preliminary data on the application

of L.P. to orbital rendezvous has been obtained. The major diffi-

culty in solving this type of application problem in its most general

(nonlinear) form, lies in the fact that for the finite thrust case it

reduces to a nonlinear two point boundary value problem. In other

investigations, iterative gradient techniques have been successfully

employed to obtain solutions for certain classes of this problem.

However, convergence to the optimum is usually slow, particularly

when the initial guess at a solution is a poor one. The results of

the work reported here can be applied toward orbital rendezvous

and station-keeping in at least the following four ways:

(a) As a means of rapidly obtaining a good initial solution to

begin a more conventional gradient technique.

(b) As a means of performing sensitivity studies through the

use of parametric linear programming.

(c) As a method of designing guidance equations for real

time solution of orbital rendezvous and station-keeping by space-

borne digital computers.

(d) As a means of solving the nonlinear problem resulting

from a comprehensive mathematical model of the situation (which

may include the higher harmonics of the earths gravity field). This

would require the use of generalized programming which was intro-

dueed but not fully developed in Sections 2.6, 3.4, and 5.4.
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Another result of this investigation is the demonstration of

the connection between dual variables of L.P. and the adjoint vari-

ables of the maximum principle. This should find use in easing the

computational difficulties of applying the discrete maximum prin-

ciple. The fact, demonstrated in Sections 5.2, 5.3, and 5.4, that

solutions can be relatively easily obtained by manual computation is

worthy of note. A great amount of computer time can be saved by

solving simple problems by hand, prior to machine computation of

larger scale problems.

The use of the functional analysis approach to optimal control

described by Kranc and Sarachik 22 has been hampered by the lack

of easy computing methods in the case of L 1 and L norms. As
shown in Section 5.3, the L. P. approach relieves this problem con-

siderably.

A new method of computing feedback coefficients has been

proposed and demonstrated in a preliminary manner in Section 4.5.

This "closed loop" control synthesis technique could be applied to

the orbital rendezvous guidance equation problem in cases where

the full six dimensional problem can be decoupled into three two

dimensional state equations. More work must be accomplished

before this technique can be shown to offer any advantage.

It is hoped that this study will encourage further work toward

making more efficient use of L. P. algorithms and concepts in opti-

mal control theory applications. At some future time, the direction

of effort should be in the development of machine codes specifically

designed for optimal control theory usage. Instead of relying on

existing codes, an algorithm which will take advantage of the specific

structure of dynamic control theory problems should result in
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greater speed, accuracy and flexibility. Certain potential extensions

will be discussed in the next section.

7. i Extensions

Several areas of potentially profitable work using the concepts

and methods of nonlinear and linear programming were identified in

the course of this investigation. These will be described in brief

under headings indicative of their connection with more well known

approaches.

(a) Nonlinear Computations:

The generalized programming method seems to offer an

attractive method for solving many nonlinear control problems pre -

viously approached only by iterative gradient techniques. As a

follow-on to the present work, the author proposes that the genera-

lized programming algorithm be tested for convergence and accuracy

on the full nonlinear rendezvous problem.

(b) Differential Gaming:

As noted at the end of Chapter III, the column vector Q

in the generalized programming technique can be considered as a

representation of a larger convex set. This set could be thought of

as those reachable states available to an evader. With some modi-

fication, the pursuit-evasion game can be computed using the tech-

nique of Section 3.4. The role played by the dual variables (pricing

vector) in this application requires clarification.

(c) Game Theory:

It is known that symmetric matrix games can be formu-

lated as linear programs and conversely. If this connection can be
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established between the linear programming formulation of the

minimum fuel problem and an equivalent game matrix, useful ideas

from both disciplines can be applied.

(d) Sensitivity Analysis:

Once an optimal L.P. solution has been obtained, the

additional computation required to obtain the new optimal solution

resulting from changes in cost coefficients right hand sides, or

"A matrix" constants is relatively minor. Parametric studies can

thus be readily performed. One such study would be to determine

the change in fuel cost versus sampling time for the bounded control

case.

(e) Upper and Lower Control Bounds:

For the rendezvous problem with spacecraft engines

which are throttleable, the L.P. approach has one advantage not

enjoyed by currently available methods. Throttleable engines

usually have a threshold below which throttling cannot occur. Thus

the allowable control region is b_tween a lower as well as an upper

bound (a region around zero being excluded). The allowable control

range is consequently not convex. The L.P. formulation is readily

adaptable to cope with this case.

(f) Stochastic Control:

Stochastic features of the rendezvous problem can be

approached via "a two stage linear program under uncertainty" for-

37.
mulation. The work of Ran, zig and Madansky is referenced here.

A two stage program contains constraints

Ax + By =b,x >- 0 where A and B are known matrices;

b is a random vector (corresponding to the rendezvous initial con-

ditions). It is desired to minimize with respect to x the function
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E Min (cx + fy)

Y

where c and f are known and E is an expectation operator taken

over the distribution of b. At a given point in an orbit, the state

vector b would be estimated and the solution to Ax = b would be

obtained and applied %o the spacecraft orbit correction system.

Because of errors in the initial estimation, and the imperfect nature

of the control acceleration, the solution vector x must be corrected

by the vector y to satisfy the constraints Ax + By = b where b is

the new state vector obtained only after application of the solution x.

In addition to this approach, other work in stochastic linear pro-

gramming has been started. To this date no codes have been de-

veloped to exploit the preliminary work which now exists.
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